

Challenges and Strategies for BS7 compliance: Addressing NOx, N₂O and NH₃ Emission Challenges

Agenda

Euro 7: What's New

Key Aspects: Emission Control

Overview Emission limits: Euro 7

Experiments with Single dosing setup

Probable Thermal Management Options

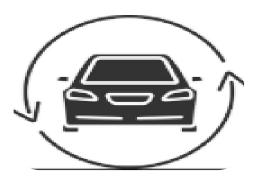
Experiments with Dual Dosing Setup

Probable layouts based on EO NOx

Comparison of Probable Layouts

Comparison of Various SCR Catalyst formulations

Euro 7: What's New?



Fuel neutral emission limits

Regulating additional pollutants

Compliance with emission rules for longer period

More stringent emission tests

Broader range of driving conditions in on road tests

Limits for emission from brakes

Digital monitoring of compliance

Rules on micro plastic emission from tyres

Key Aspects: Emission Control

Additional pollutants added.

- 1. Achieving tradeoff between NOx, N₂O and NH₃ a key challenge
- 2. NMOG and CH4 added as new pollutants

Emission Durability

- 1. Main lifetime 7L kms. or 12 years
- 2. Additional lifetime 8.75L kms. or 15 years

Key Aspects

Particulate number

1. Particle size to be measured reduced from 23nm to 10nm

RDE/ PEMS

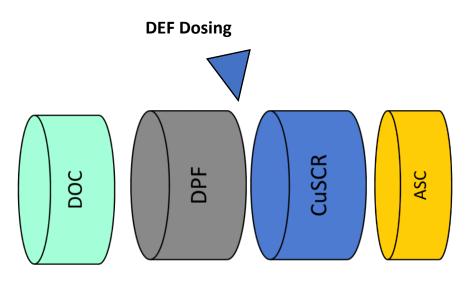
- 1. Payload 50% → 10-100%
- 2. Power Window $10\% \rightarrow 6\%$
- 3. Cold Start included

Overview Emission Limits: Euro 7

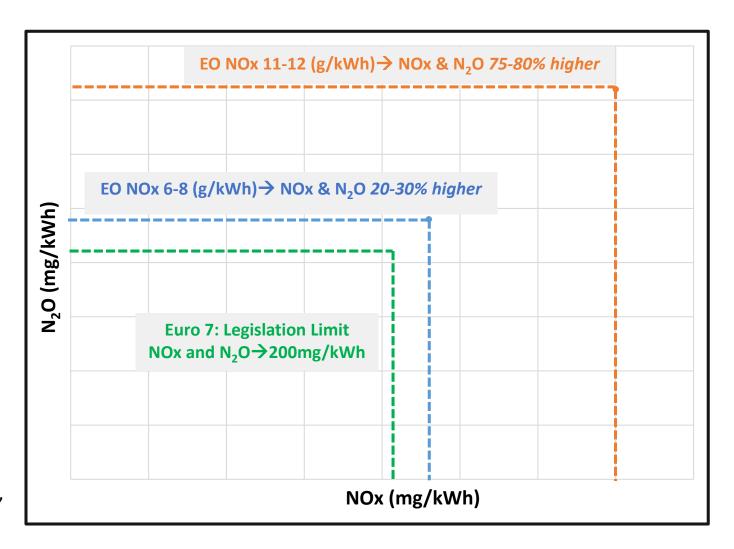
Same Limits for Steady State and Transient Cycles

Pollutant	Units	Euro7 Limits	BS6/Euro6 Limits		Remarks
		WHTC and WHSC	WHTC	WHSC	
NOx	mg/kWh	200	460	400	
PN	# x 10 ¹¹	6 (10nm)	6 (23nm)	8(23nm)	Particle size changed
PM	mg/kWh	8	10	10	
AIII	ppm	-	10	10	
NH ₃	mg/kWh	60	-	-	Mass Based
N ₂ O	mg/kWh	200	-	-	Newly added
CH₄	mg/kWh	500	-	-	Newly added
со	mg/kWh	1500	4000	4000	
NMOG	mg/kWh	80	NA	NA	Newly added
ТНС	mg/kWh	-	160	130	Removed
НСНО	mg/kWh	-	-	-	To be reviewed

RDE


- Payload 50% → 10%-100%
- Power Window 10%→6%

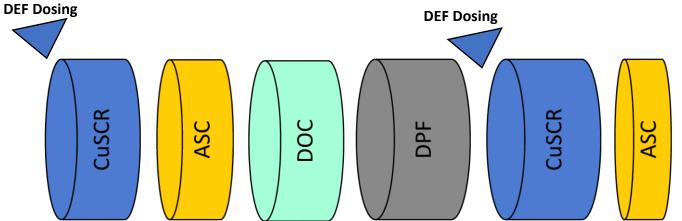
Pollutant	Units	Euro7 Limits	BS6/Euro 6 Limits	Remarks
NOx	mg/kWh	260	CF of 1.5 for NOx, CO and THC	
PN	# x 10 ¹¹	9(10nm)		Newly Added
PM	mg/kWh	-		
NH ₃	ppm	85		Newly added
N ₂ O	mg/kWh	260		Newly added
CH₄	mg/kWh	650		Newly added
со	mg/kWh	1950		
NMOG	mg/kWh	105		Newly added
ТНС	mg/kWh	-		Removed
нсно	mg/kWh	-		To be reviewed


Experiments with Single Dosing set up

EATS configuration(BS6 Formulation)

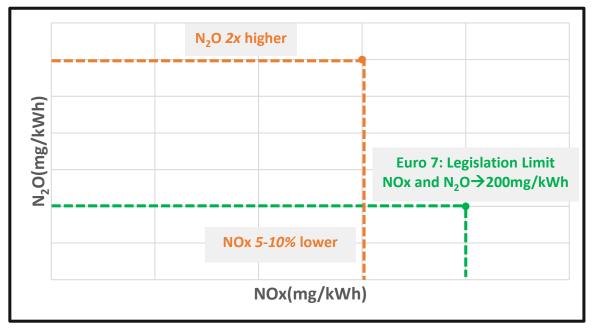
- EO NOx at 6–8 g/kWh: Results close to Euro 7 limits; further NOx/N₂O reduction needs system and thermal management changes
- Meeting engineering targets a further challenge.
- EO NOx at 11–12 g/kWh: Emissions significantly elevated, dual dosing or alternative strategies needed for compliance.

Probable Thermal Management Options

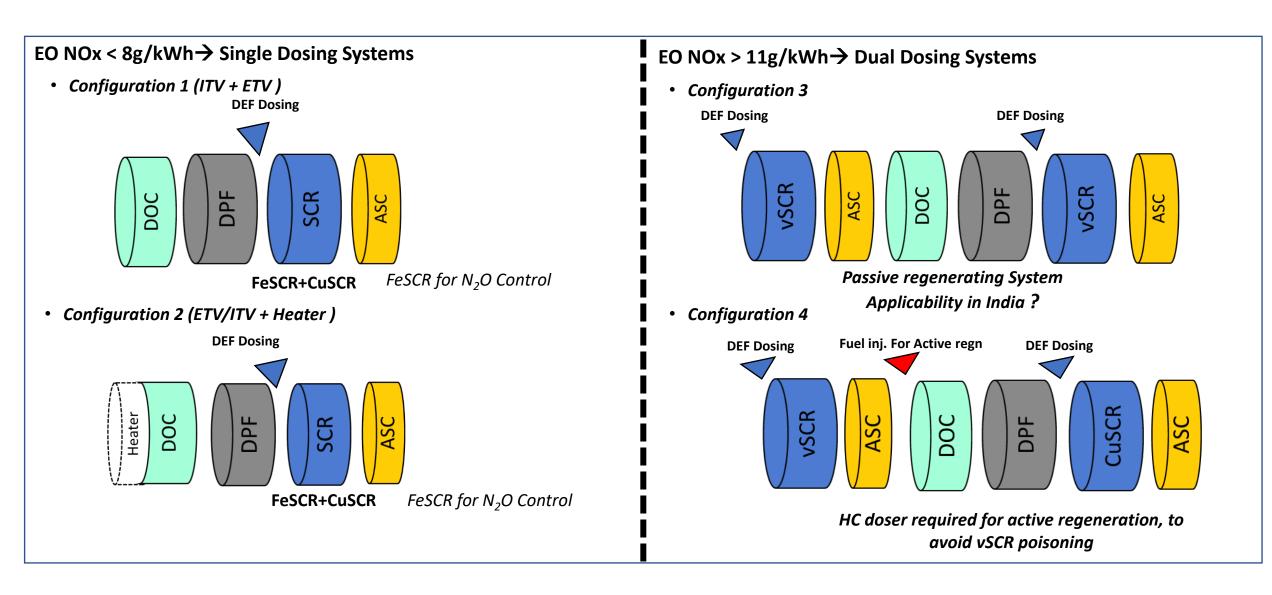


Feature	ETV + Heater	ITV + ETV	ITV + Heater
Packaging & Integration	Major Architectural ChangeAdding a heater may call for a 48V architecture	 Incremental Change Modification in wiring harness required for adapting both. 	Major Architectural ChangeAdding a heater may call for a 48V architecture
WHTC Cold Start Performance	Best • Instant heater response+ Sustained heat from ETV	Weak • Relies solely on engine heat	 Excellent start from heater but weaker sustained heat from ITV
PEMS/ISC Compliance	Best Robust and responsive to real world Conditions	Challenging under Cold Start conditions	GoodHeater covers cold start, but lack of ETVs sustained heat.
Fuel Efficiency (BSFC)	MediumHeater Electric load penalty	Medium-to-PoorHigh fuel penalty from ITV+ETVFrequent DPF regenerations	Medium • Heater Electric load penalty
Cost	High cost for adding a heater	• Lowest	High cost for adding a heater
Key Risk for Euro 7	 Lowest technical risk for compliance. 	Potential challenge in meeting cold-start PEMS targets	Low technical risk for compliance.

Experiments with Dual Dosing Set up

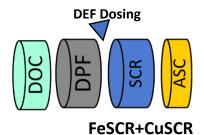


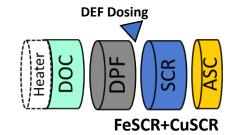
EATS configuration(BS6 Formulation)

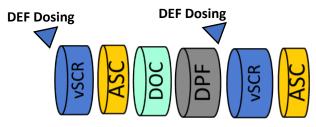

- Dual dosing with existing SCR formulations achieves Euro 7 NOx limit marginally.
- Euro 7 N₂O and NH₃ limits are not met, indicating the need of different SCR formulations for controlling N₂O alongside NOx.
- Higher volume ASC systems needed for NH₃ control.
- In addition to above points dosing strategies also need to be revisited

Trials Conducted with EO Nox Range 11-12g/kWh					
Dosing strategies for Euro 7	ANR	ProsGood PN₁₀ control as major urea injection			
Upstream Doser	1.2 - 1.4	before DPF Cons			
Downstream Doser	0.5 - 0.7	 Majority NOx gets consumed before DPF, affects DPF passive regeneration. 			
Upstream Doser	0.5 - 0.7	Pros • Passive Regeneration is not affected			
Downstream Doser	1.2 - 1.4	 PN₁₀ emissions can increase, major urea injection is after DPF 			

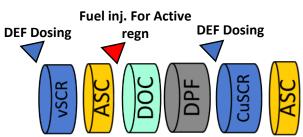
Probable Layouts Based on EO NOx




Comparison of Probable Layouts


• Configuration 1

• Configuration 2



• Configuration 3

Passive regenerating System

• Configuration 4

	EO NOx < 8g/kWh		EO NOx > 11g/kWh	
	Configuration 1	Configuration 2	Configuration 3	Configuration 4
Cost	Low	High	Medium	High
Complexity	Low	High	Medium	High
Emission Robustness	Low	Medium	High	High
Calibration efforts	Low (Proven for BS6)	Medium	High	High
Urea Consumption	Low	Low	High	High
Packaging	Less efforts	Medium efforts	High efforts	High efforts

Comparison of Various SCR Catalyst formulations

Parameter	Cu-SCR	Fe-SCR	Vanadium-SCR
High-temp SCR performance	Medium	Good	Poor
Low-temp SCR performance	Good	Poor	Good
High-temp Durability	Good	Good	Poor
Sulphur Resistance	Poor	Moderate	High
Performance in low NO ₂	High	Low	Medium
Performance in High NO ₂	Medium	Medium	Low
N ₂ O Formation Risk	High	Low	Low
Toxicity Concern	None	None	Yes (Vanadium compounds)
Relative Cost	High (expensive)	Medium	Low (cheapest)

Thank You