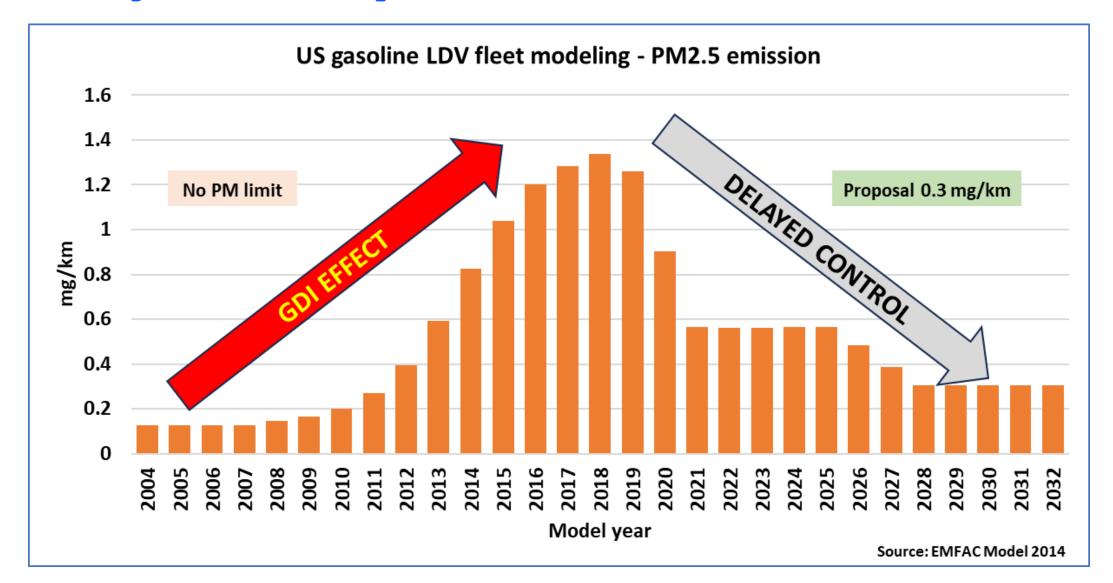
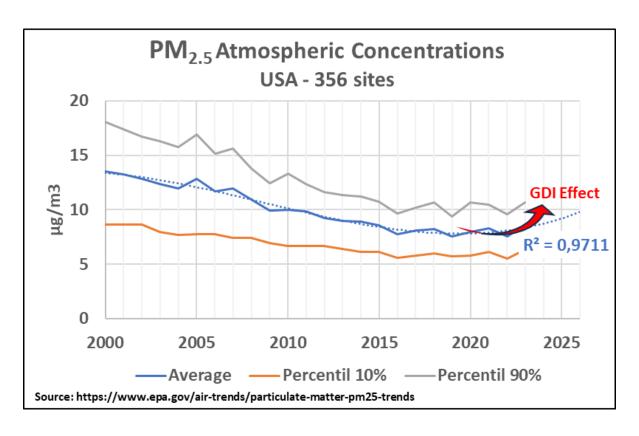


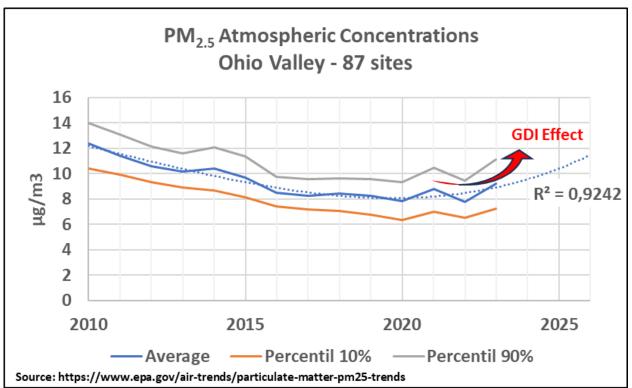
ECMA's ECT - 2025 16th International Conference & Exposition

Comparison of Particulate Emissions from Different Categories of Diesel and Otto Engines and Vehicles


Gabriel Murgel Branco Fábio Cardinale Branco

Average PM Emission trends in USA - Gasoline LDV


Observing GDI market penetration in USA...

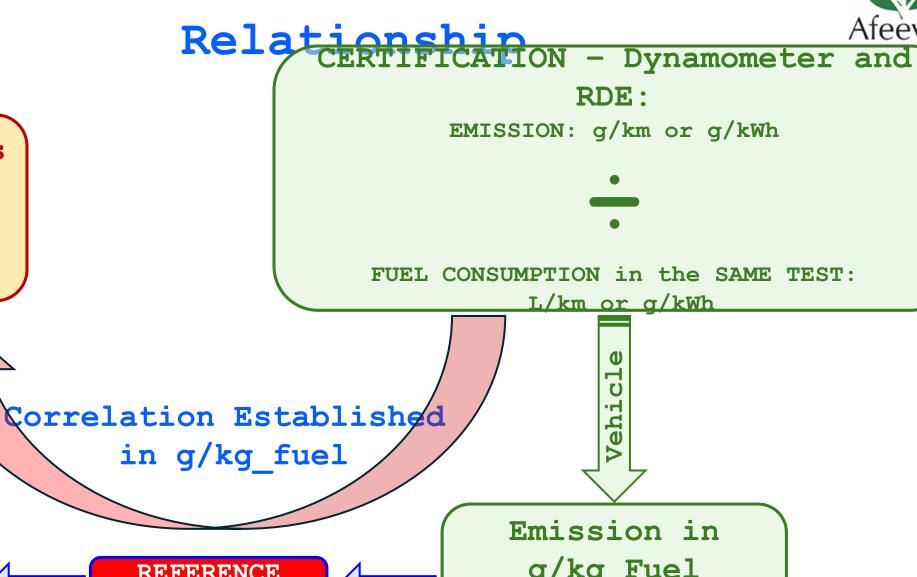


Annual Atmospheric Averages of PM_{2.5} USA

Evolution of PM Control in Brazi_{Afeevas}

HDV Phase	PM mg/kWh	Notes
Pre PROCONVE	1500	Old typical data, converted to
P3 - 1996	1100	equivalent values in the ETC test
P4 - 2000	250	
P5 - 2005	160	Limit - Introduced S500 diesel oil
P6 - 2009	30	Phase canceled due to unavailability of S50 diesel oil
P7 - 2012	30	Limit - Introduced S10 diesel oil
P8 - 2023	1 ^	Mass limit in addition to the limit of

PM Emission std (mg/km) - Light-duty Vehicles					
DDOCONVE whose	Year	Passenger	Commercials		
PROCONVE phase		Cars	Otto	Diesel	
L7 /L8 - individual	2022	6	6	20	
	2025	4	ϵ)	
10 componets	2027	4	6		
L8 - corporate	2029	, - 3	4	77	
	2031	3	4		


PM Emission Averages - mg/km

Calendar Year	Passenger Vehicles				Commercial Vehicles			
	Flex -Ethanol	Gasohol	Flex -Gasohol	Diesel	Flex -Ethanol	Gasohol	Flex -Gasohol	
1997 a 2011	1,1	1,1	1,1	65	1,1	1,1	1,1	
2011 a 2021	1,1	1,1	1,1	13,6	1,1	1,1	1,1	
2022 (L7)	1,6	1,3	3,0	2,0	1,6	2,3	3,0	
2023	2,4	1,3	2,9	1,1	1,0	1,7	3,5 E	
2024	1,7	1,2	2,4	0,7	1,0	1,8	3,5	
2022-24 Ave.	1,9	1,3	2,8	1,2	1,2	1,9	3,3	

LDV x HDV: Certification Data

Balance:
g_pollutant/Mo
1 C or g/kg

Carbon

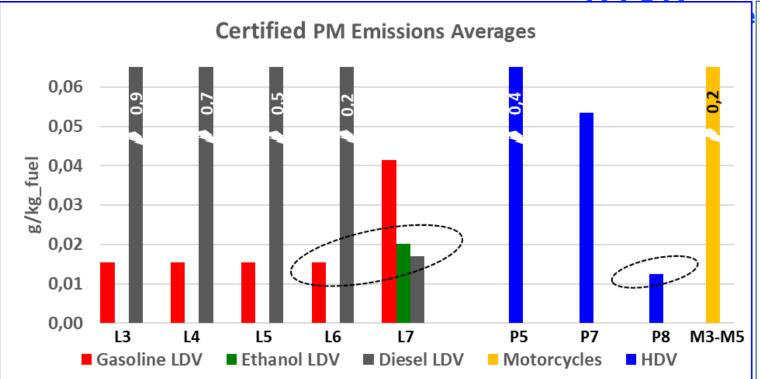
RS Measurements

CO/CO₂

HC/CO₂

NOx/CO₂

MP/CO₂


REFERENCE VALUES

g/kg Fuel
(or g/kg
Carbon)

Certified PM Emissions Expressed in

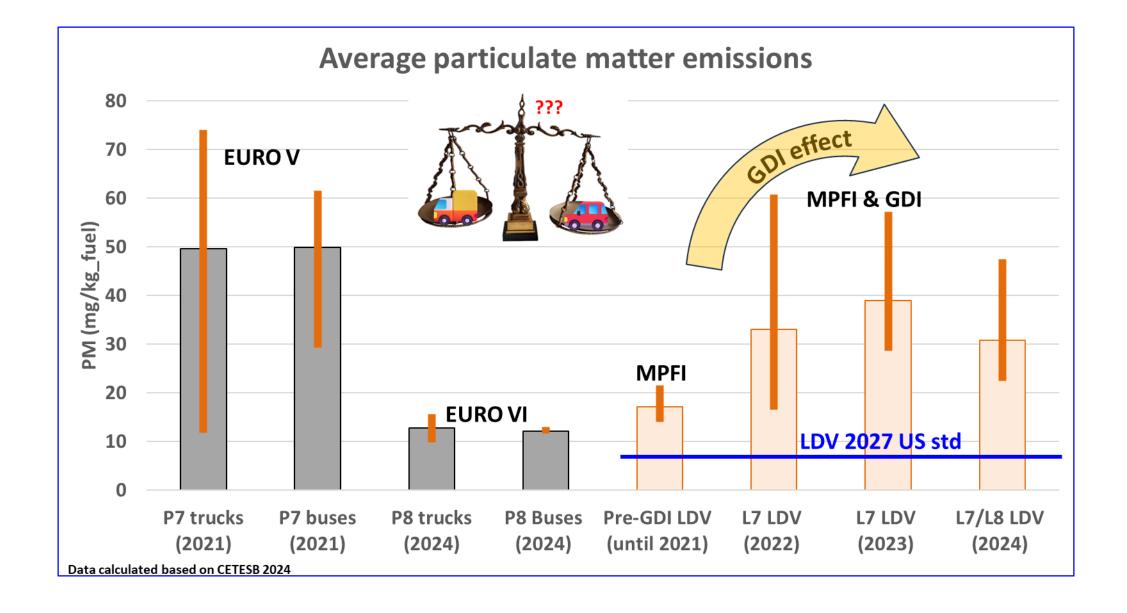
Important Findings for PM control:

- Otto LDV had the lowest PM emissions up to phase L6
- GDI from gasoline and flex-fuel engines increased PM emissions by more than 100%
- Fueling GDI with ethanol appears to be compatible with previous phases levels
- diesel light and heavy-duty engines have been drastically reduced in stages L7 and P8 (95% to 99%), being compatible with those traditional gasoline MPFI

Preliminary Conclusions:

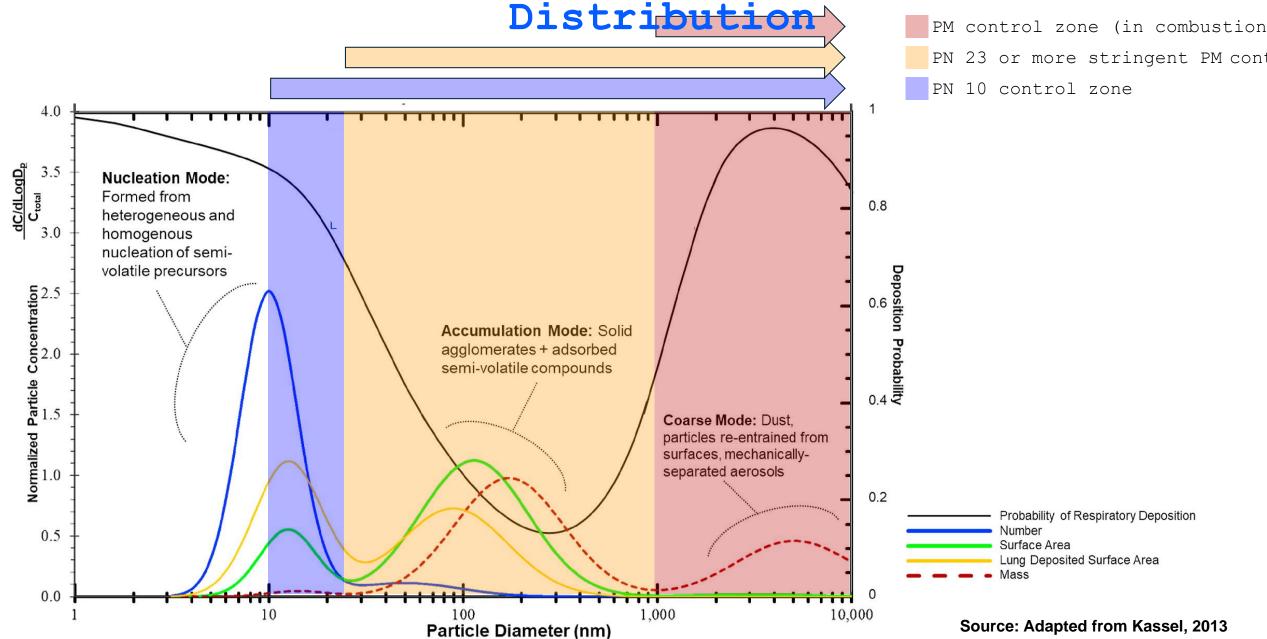
- Motorcycles technologies still
- It is possible to reduce GDI PM emissions to former levels immediately high PM emissions, at
- The use of ethanol seems to be a possibility for mitigating this presents almost four times higher
- Brazil already has technological solutions and aftertreatment systems for reducing PM emissions from light duty diesel engines to the required levels, which can also be used for Otto GDI engines.

Fuel Sales by Brazilian Region in 2024

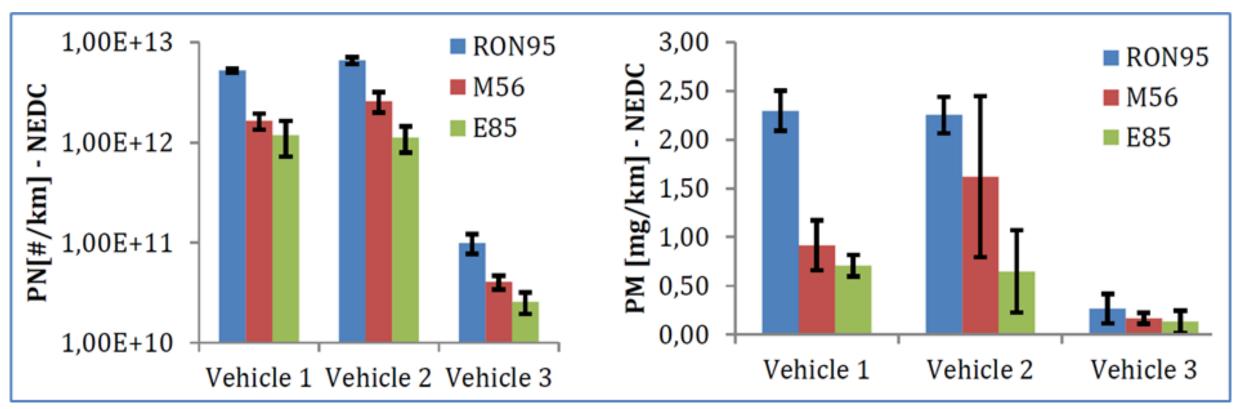

Base year: 2024	HYDRATED ETHANOL	E27 GASOHOL	DIESEL OIL
BRAZIL	16%	33%	50%
SÃO PAULO STATE	31%	28%	41%
SOUTHEAST REGION	25%	30%	46%
NORTHEAST REGION	8%	44%	49%
SOUTH REGION	7%	40%	53%
CENTRAL-WEST REGION	21%	22%	57%
NORTH REGION	4%	33%	63%

Source: based on ANP data (National Agency for Petroleum, Natural Gas and Biofuels)

Heavy Duty x Light Duty PM Emission

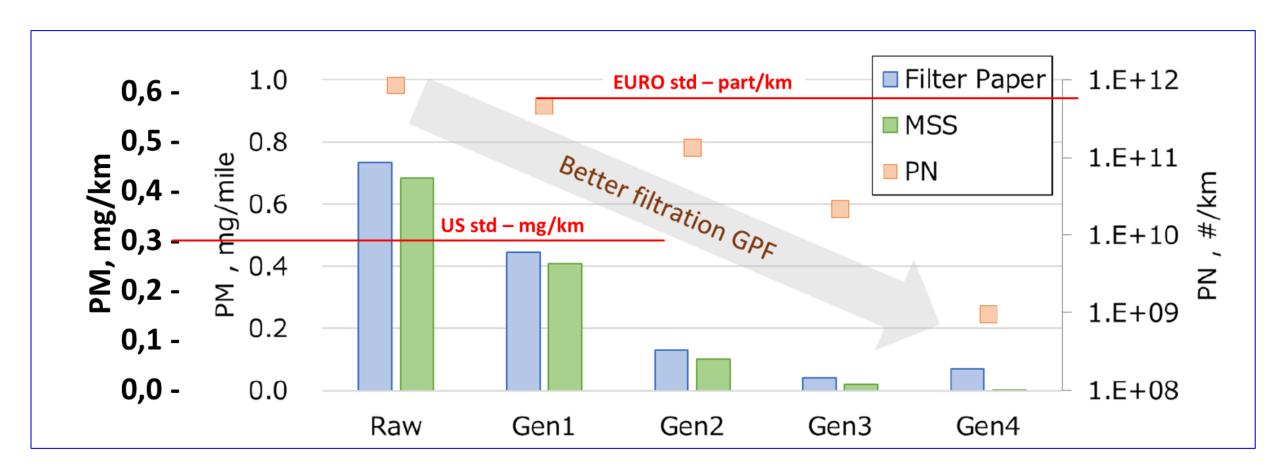


Exhaust Emission Particles Size



Ethanol's Influence on PM and PN

E20 reduces PM by ~20%
E30 reduces PM up to


45%

Ceramic Filters Evolution from 1st to Generation

Source: Adapted from K. Sugiura et al.

Balancing PM Emissions from Vehicles and Engines

	0-1	Particulate Matter Emissions			
PROCONVE	Category	St	tandards	mg/kg_ _{fuel}	
Phase P8	trucks and buses	10mg/kWh	6x10 ¹¹ part/kWh WHTC	10 a 16 (2024 averages)	
Phase L8	cars and pickup trucks	4mg/km		29 a 57 (2024 averages)	
Phase L8 adjustment	cars and pickup trucks	1mg/km		/18 (2021 averages)	
New Phase L9	cars and pickup trucks	0.3mg/km	6x10 ¹¹ part/km	06/(~ 1/3 of pre-GDI)	

Extension of PM Emission Analysis to Afeevas HD Engines

Typical particulate matter emissions from machinery and generators

PROCONVE	Category	Particulate Matter Emissions			
PROCONVE		Standards		mg/kg_ _{fuel}	
Phase MAR I	non-road machinery	200 to 600 mg/kWh		900 to 2400 (average depending on machine type)	
Phase MAR II (under discussion)	non-road machinery	20 to 30 mg/kWh		90 to 125 (standards) 50 (expected average - equivalent to P7)	
Current market (unregulated)	generators			2200 to 4200 (estimated as Tier 1)	
New program (under discussion)	generators	20mg/kWh		90 to 125 (standards) 50 (average - equivalent to P7/MAR II)	
New program (under discussion)	special generators	10mg/kWh	6x10 ¹¹ part/kWh	10 to 16 (equivalent to average P8, for recharging electric vehicles)	

Conclusions and Recommended Strategies to Brazil

- a) Route Correction: Jan. 1st, 2029 change in BIN 30 and BIN 20 for light-duty passenger vehicles;
 - corporate PM emission std → 1 mg/km (mass);
 - measurement of typical PN_{10} values for MPFI and GDI.
- b) PM emission reduction: Jan. 1st, 2031;
 - PM (mass) standard of 0.3 mg/km;
 - PN₁₀ standard of 6x10¹¹ particles/km.
- c) to extend this analysis to individual particulates results in current Brazilian LDVs;
 - Measuring PM and PN from GDI and MPFI vehicles, using E30 gasohol;
 - Check the effectiveness of E100 fuel in reducing PM and PN.
- d) Filtration technologies associated with catalysts have to be addressed to provide better public health protection and helping to meet the Air Quality Standards;
- e) Harmonize particulate limits for special generator sets, whose power generation is also used to recharge electric vehicles.

Thank you!

Gabriel Murgel Branco Cel. phone: +55 11 9 9216-8020 gm.branc@gmail.com Fábio Cardinale Branco Cel. phone: +55 11 9 9955-8339 fabio.branco4@gmail.com