

ECT topic: Advancement and Innovations in Emission Control Technologies for Offroad (Tractor, CEV) and Non-road (genset, locomotive, marine) segments

Albonair

Revolutionizing Exhaust Management: A Dual Nox Control Architecture for High-Power Diesel Engines

Incepted in 2007...

High power Diesel V Engines - Common Challenges

1.Design & Manufacturing

 Complex geometry and precision machining with durability and cost challenges.

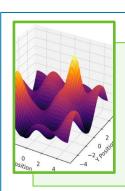
Balancing & NVH

• Balancing, vibration, and noise - demands advanced crankshaft and damping solutions.

Maintenance & Service

• Compact design complicates access, raising service time and cost.

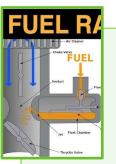
Fuel Efficiency

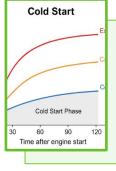

 Achieving high fuel efficiency requires precise control of air-fuel mixing

Emissions Compliance

 Uneven exhaust makes emission compliance and fuel efficiency harder.

V Engine - Emission Compliance challenges

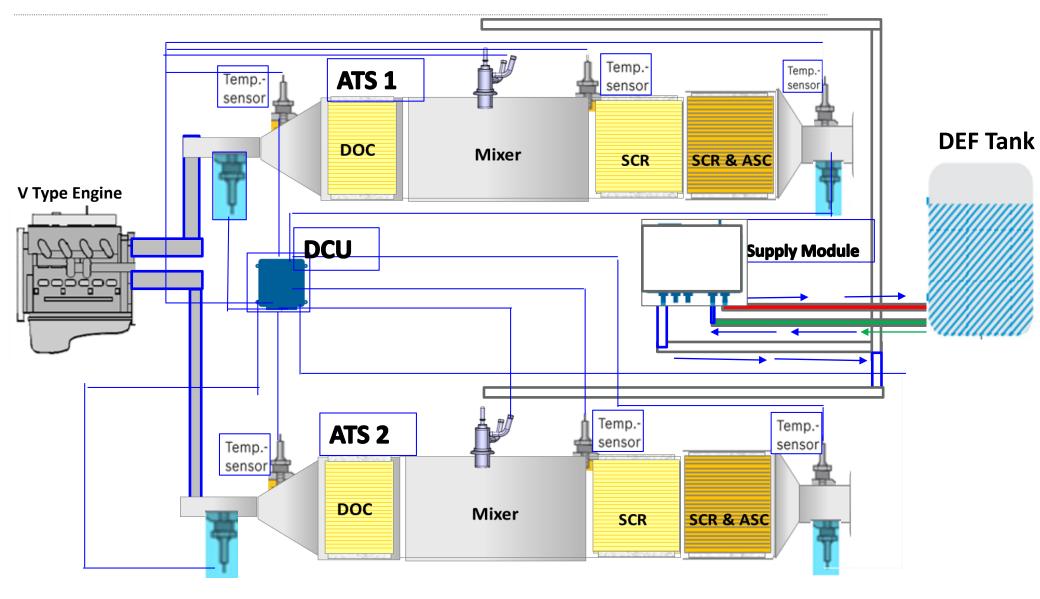



1. Uneven Exhaust Temperatures Between Banks

2. Longer & Uneven Exhaust Routing

3. Complex Air & Fuel Management

4. More Cold-Start Challenges

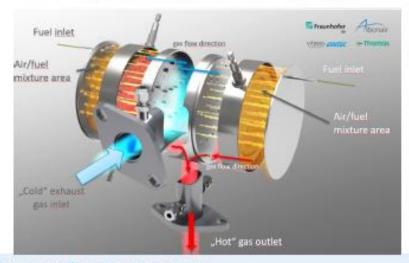

5. Control System Complexity

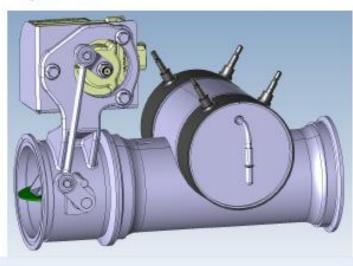
6. Higher Calibration Effort

Dual dosing system - Common Architecture

Solutions in the Market Today – Value analysis

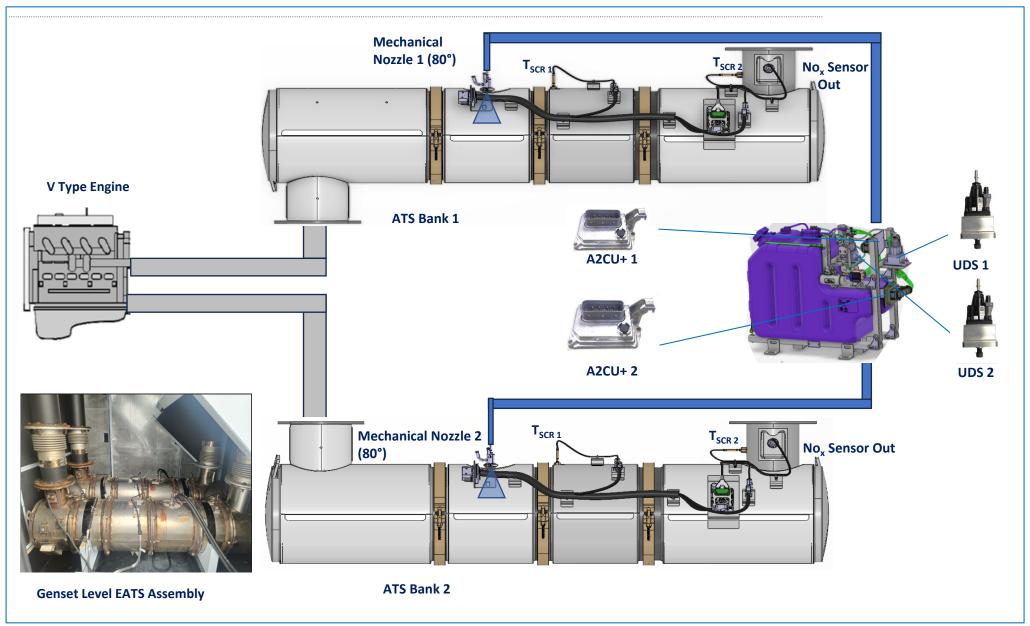
S.no	Possibile solutions	Availability in Market	Status
1	Close-coupled catalyst per bank (one DOC/SCR next to each head)	Predominantly Available	•
2	Equal-length exhaust headers & matched runner geometry	Predominantly Available	•
3	Thermal isolation and insulation of manifolds	Moderately Available	••
4	Exhaust mixing collector / tuned merge geometry	Predominantly Available	•
5	Active thermal devices (E-heaters / electric catalyst heating)	Less Prevelant	
6	Bank-specific sensing and closed-loop control	Less Prevelant	
7	Bank-wise fuel/ignition/after-treatment strategies	Less Prevelant	•
8	Controlled Calibration Solution	Less Prevelant	
9	Bank Wise Independent Control System	Less Prevelant	


How Albonair Addresses the Challenges



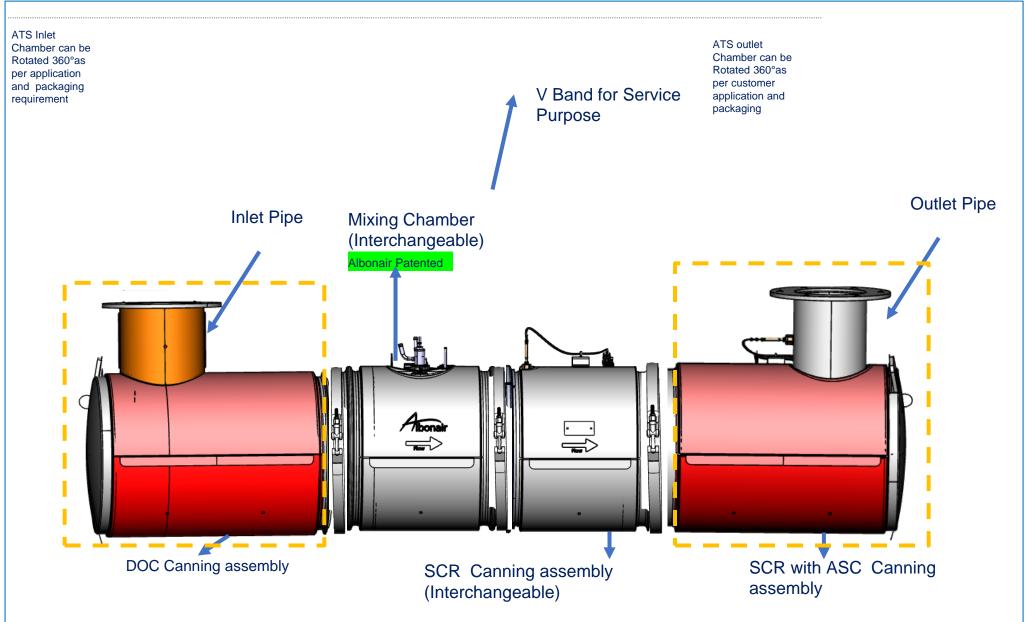
S.no	Possibile solutions	Status	Albonair Solution	Status	
1	Close-coupled catalyst per bank (one DOC/SCR next to each head)	•	Our Architecture is Close coupled Catalyst per Bank	•	
2	Equal-length exhaust headers & matched runner geometry	•	Our Solution take care of the variations in the exhaust length & runner geometry	··	
3	Thermal isolation and insulation of manifolds	••	Thermal insulation in ATS and exhaust pipes minimizes heat loss and boosts catalyst performance.		
4	Exhaust mixing collector / tuned merge geometry	·	Our Mixer is globally engineered for precision and proven in real-world use.	•	
5	Active thermal devices (E-heaters / electric catalyst heating)		Albonair's CAT VAP solution ensures efficient EATS thermal management	•	
6	Bank-specific sensing and closed-loop control	•	Albonair Hardware and Software Architecture independently		
7	Bank-wise fuel/ignition/after-treatment strategies	•			
8	Controlled Calibration Solution		controls each engine bank, ensuring stability and enabling dynamic exhaust-based adjustments.		
9	Bank Wise Independent Control System				

flexible System for ATS Heating and Keeping the Temperature

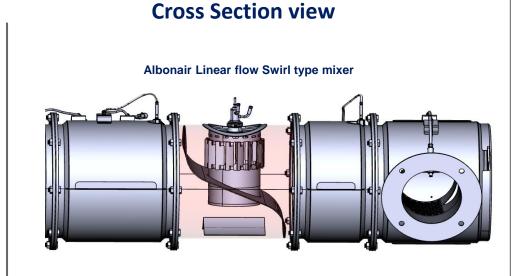

SYSTEM CHARACTERISTICS

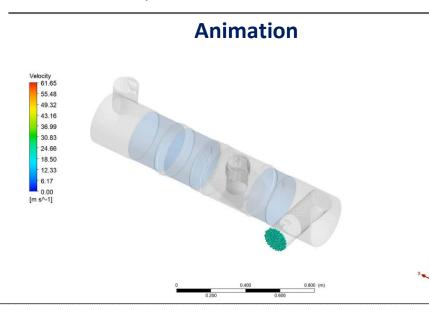
- · CatVap is a catalytic heating system using already existing components
- · Efficient and flexible aftertreatment thermal-management
- · Powered with fuel only, after short electrical system start
- · No electric power consumption during further operation
- Keeps the exhaust temperature at target level independent of engine operation

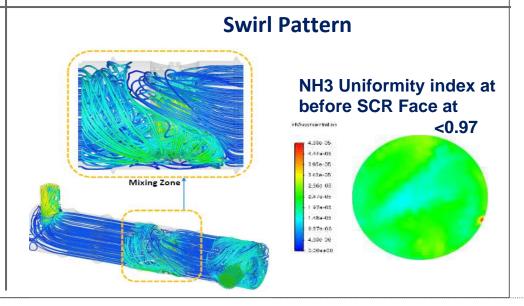
- Continuous DOC / SCR temperature stabilization in "Heat retention mode"
- · Enables active DPF regeneration (replacing HC doser) with high efficiency
- · No engine thermal-management required


Albonair Dual Dosing System

Albonair EATS Modular Approach

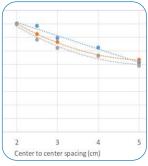

Albonair Unique Mixer for High Conversion Efficiency

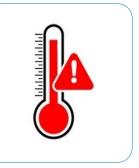



Product Information

- Customized Design Layout
- High flow and N3B Uniformity
- > High resistance to urea deposit
- ➤ Modular system easily adoptable to all application
- > NH3 UI: >0.96
- ➤ NH3 Conversion rate : >95%
- Mixer Back pressure : 3kpa @ 1500kg/hr,

550 C Temperature





Challenges in Urea Dosing system

Urea
crystallization
& nozzle
clogging –
deposits block
injectors and
lines.

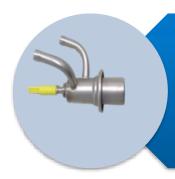
Dosing inconsistency – poor control causes under/overdosing, ammonia slip.

Freeze & thermal limitations – AdBlue freezes; high/uneven temps affect conversion.

Pump & injector wear – moving parts prone to corrosion, fatigue, and failure

complex system architecture – multiple components increase failure points. Maintenance & service challenges – cleaning, replacement, and diagnostics are laborintensive.

Urea Dosing Solutions in the Market Today – Value analysis


S.no	Possible solutions	Predominant in Market	Status	Albonair Solution	Status 2
1	Purge Systems	Moderately Prevailent	•••	By the virtue of desing enabling no free Urea in line , purging is eliminated in Albonair System	•
2	Sensor & Control Strategies	Moderately Prevailent	•••	Albonair injector assembly is completely mechnaical avaoiding complex control system requirements	
3	Active Cooling Systems	Predominant in Market	·	Engine Coolant acts as Cooling medium for Nozzle	
4	Redundant Cooling Paths	Predominant in Market	···	With Albonair Smart Pump which gets actuated only on request from controller , dosing is precise and accurate	•
5	Manual Cleaning Possibility	Less Prevalent		Manual Cleaning with HOT water /flame Cleaning	•
6	High-Temperature Materials	Less Prevalent		Albonair Injector Nozzle is made of Special Alloy Material which can withstand upto 800 Deg C	<u></u>
7	Simplified Mechanism	Less Prevalent		Construction is simple which has no moving parts	·
8	Service-Oriented Design	Less Prevalent	2	Nozzle is 100% recoverable in case of clogging which make the requirement for repalcement almost Zero	<u></u>

Albonair Airless Dosing System

- Reliable & Durable: Uniform urea dosing with seamless integration
- Consistent: 4Kg/hr (12V) & 8Kg/hr (24V) with stable pressure control
- Precise: Built-in UREA pressure sensor for accurate dosing
- **Versatile**: Compact, maintenance-free design for on-road, off-highway & stationary use

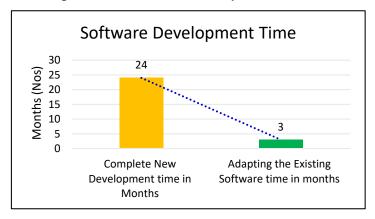
Advanced SCR Nozzle

- Robust: Withstands up to 800°C, compact & zero-maintenance
- Efficient: Optimized atomization (~90µm airless) for better DEF usage
- Consistent: No DEF deposition or performance interruptions

Advanced EATS Controller

- Flexible: Dual-mode (Master/Slave) for dosing or full ATS management
- Adaptive: Supports standalone or end-to-end control
- Robust: -40°C to 85°C, IP6K9K protection
- Compatible: Works with wide ECU range via J1939 protocol

QCIS Benefits



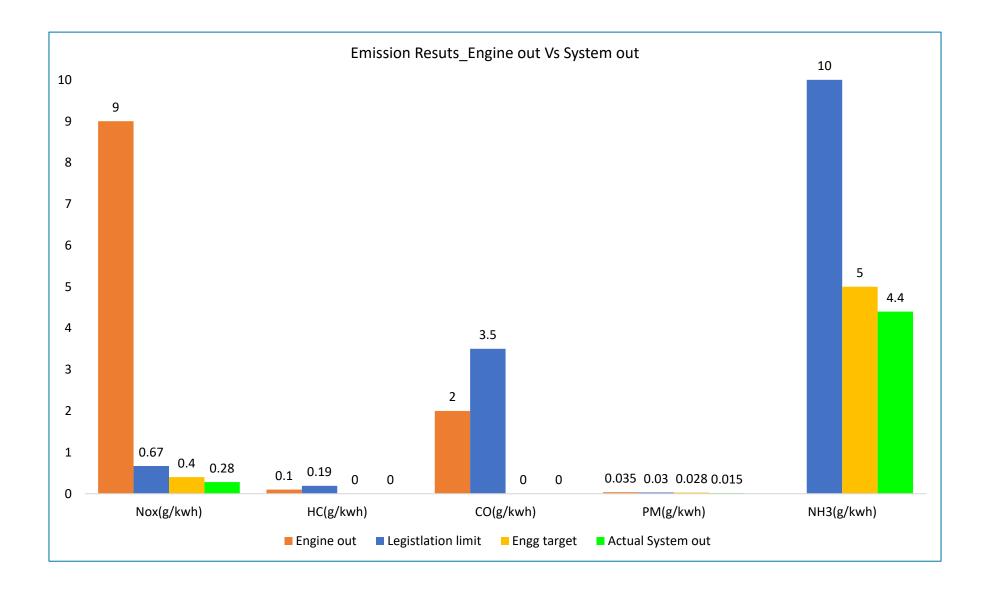
Quality

- Independent bank-wise control enhances accuracy and system stability.
- Dynamic adaptation to exhaust variations ensures long-term reliability.
- Thermal insulations on ATS minimizes heat loss, improving catalyst efficiency
- Robust hardware & software architecture reduces calibration variations and failures.

Cost/Time

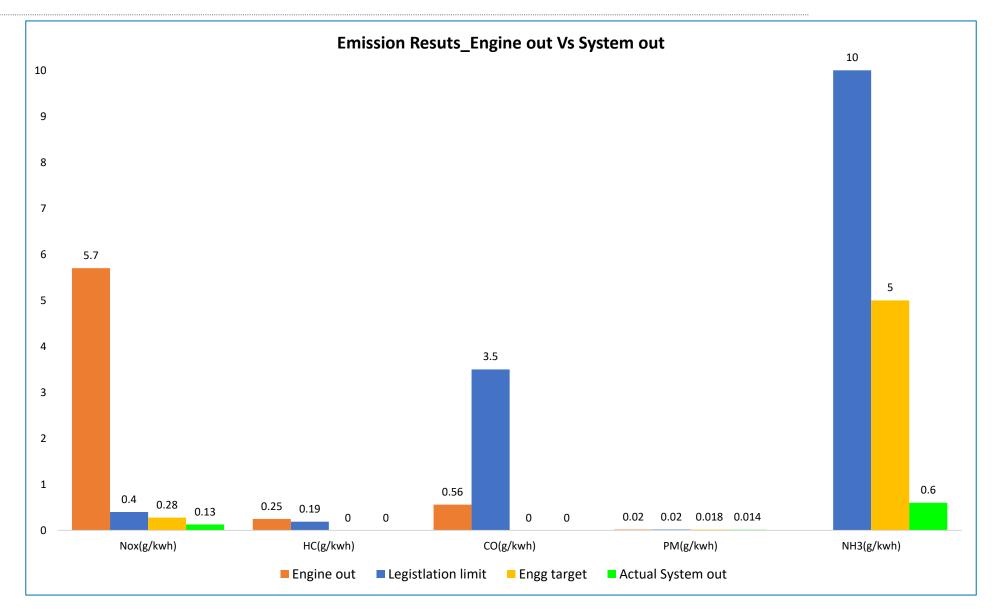
•Even with 2 Controllers and 2 Pump , our overall system cost is competitive adding value to OEMs overall system

Innovation


- Robust Control Software architecture Robust to varying Engine and emission conditions.
- > Smart Operation Pump actuates only on ACU request, ensuring efficiency and reduced wear.
- ➤ **High Conversion** Advanced mixer achieves >95% NOx reduction efficiency.
- ➤ **Robust Design** Mechanical nozzle free from temperature limitations, ensuring durability.

Sustainability

- ➤ Lower Emissions Enhanced NOx reduction ensures cleaner air and compliance with stringent norms.
- ➤ **Resource Efficiency** Optimized urea utilization minimizes wastage and reduces ammonia slip.
- Extended Product Lifecycle Longer component life reduces replacements and lowers environmental footprint.
- ➤ Energy Efficiency System operates only when needed, minimizing unnecessary energy consumption.
- ➤ **Robust & Reliable Design** Durability against heat, crystallization, vibration, and long-term usage, ensuring sustainable operation.


Emission results 1

Emission results 2

Conclusion

⊘ Superior Quality –

Independent bank-wise control, dynamic adaptation, and robust architecture ensure accuracy, reliability, and minimized failures.

QCIS delivers a reliable, efficient, and future-ready solution for OEMs, ensuring long-term value and compliance with stringent emission norms

✓ Sustainability Impact –
Lower emissions, optimized resource utilization, extended component life, and minimized energy consumption.

✓ Innovative Design – Robust control, smart pump actuation, and advanced mixer technology enable >95% NOx reduction efficiency.

Thank You

German Engineering for clean air