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Alternative Fuels and ethanol fuel facts
« Renewable fuel from biomass

- Corn starch ethanol demonstrates positive energy balance

- Cellulosic ethanol lower levels of life cycle GHS emissions

- Higher octane number than gasoline, lower-octane gasoline is blended with ethanol to attain
the standard 87 octane

« Less energy density than gasoline

« E10 and E85 are typically used from blends of gasoline and ethanol
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Ethanol Blending of Gasoline
Summary of Research 09/2025, Maria Vlachou

Results contained here:

« Lab reactor perturbed light off testing (A=0.99) on 7 TWC powder components across 5
conditions: EO, E10, E20, ES85 & E100

Conclusions
« Significant acetaldehyde and methane make is seen due to ethanol cracking on the TWC
- Ethanol cracking begins at v. low temperature & before THC conversion (or other conversion)

Acetaldehyde-make correlates with ceria content
* Pd produces more methane than Rh or Pt (easier for Pd to break the C=C bond)

No formaldehyde-make is seen

Significant ethylene-make is seen for Pt/alumina (some for Pd/alumina)
« Increasing ethanol content decreases CO conversions/shifts CO light-off to higher temperature

- Increasing ethanol content increases NH; selectivity (but NO, conv. unchanged)
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Perturbed Light-off Test Details

NO 1500 ppm 1500 ppm 1500 ppm 1500 ppm 1500 ppm
. 1800 ppm C1 (600 ppm 1620 ppm C1 (540 ppm 1440 ppm C1 (480 ppm 270 ppm C1 (90 ppm )
HC 1: Propylene CsHe) CsHe) CsHe) CsHe)
. 900 ppm C1 (300 ppm 810 ppm C1 (270 ppm 720 ppm C1 (240 ppm 135 ppm C1 (45 ppm )
HC 2: Propane C3Hs) CsHs) CsHg) CsHs)
HC 3: Ethanol ) 100 ppm C1 (50 ppm 200 ppm C1 (100 ppm 850 ppm C1 (425 ppm 1000 ppm C1 (500 ppm
' CH3CH>OH) CH3CH>0H) CH3CH>0H) CH3CH,0H)
CO base 0.73% 0.73% 0.73% 0.73% 0.73%
H2 base 0.24% 0.24% 0.24% 0.24% 0.24%
02 base 0.59% 0.56% 0.53% 0.34% 0.30%
CO pert 1.47% (2.2% total rich) 1.47% (2.2% total rich) 1.47% (2.2% total rich) 1.47% (2.2% total rich) 1.47% (2.2% total rich)
0.49% (0.73% total 0.49% (0.73% total 0.49% (0.73% total 0.49% (0.73% total 0.49% (0.73% total
H2 pert : - - . .
rich) rich) rich) rich) rich)
02 pert 1% (1.59% total lean) 1% (1.56% total lean) 1% (1.61% total lean) 1% (1.34% total lean) 1% (1.30% total lean)
Total C from HCs 2700 ppm 2530 ppm 2360 ppm 1255 ppm 1000 ppm
Total H from HCs 6000 ppm 5700 ppm 5400 ppm 3450 ppm 3000 ppm
H:C Ratio of HCs 2.22 2.25 2.29 2.75 3
Total O from HCs 0 ppm 50 ppm 100 ppm 425 ppm 500 ppm

CO,: 14%, H,0: 5%, perturbation frequency: 0.167 Hz (3 s rich, 3 s lean), Perturbation Amplitude: 0.05, Average Lambda: 0.99, Ramp rate: 10°C/min
A lean pretreatment in 5% 0O,/N, and held at 500°C for 15 mins was performed between tests.

J M TWCs were aged via redox ageing (A=0.99+0.05 every 5 mins) at 950°C for 16 h.



Important to know
Ethanol Cracking

« Before “true” conversion, ethanol decomposes or “cracks” into other species via the TWC,
primarily acetaldehyde, methane, H,, H,O0 and CO

Dlrect to methane + CO (+ H,)

+ H,0

« Smaller amounts of other HCs such as ethylene, ethane and propane are also produced (before
conversion)

« Methane is still produced (and unconverted) by the end of the test at 500°C
\J M Insert footer here



Ethanol Conversion

o Ethanol conversion, through cracking,
occurs relatively early; but this reaction
not very selective

o Acetaldehyde is formed during EtOH light
off, which is further converted into CH, at
higher temperatures

o A “Gap” of undesired products is seen
during the entire temperature window
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TWCs that reduce ethanol slip forms more
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NO, Activity Changes

No change to NO conversion, but NH; selectivity increases (N, selectivity decreases) with increasing ethanol content

NO Conversion @500C
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Potentially due to increasing the H:C ratio with
increasing ethanol content, i.e. 3 vs 2.22 for E100
vs EO
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Market catalyst (Pd/Rh)

Bi-fuel CNG vehicle tests JM TWC design (Pt/Pd/Rh)
WLTP cycle JM CNG design (Pt/Pd/Rh)

Aging condition: 300hrs/950C+850C/redox
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TWC design provide significantly improved LO, but lack of CH, conversion at high T
CNG design significantly improves CH, conversion while still providing good light off




CH4 conversions on Pd and Pt catalysts
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CH, removal reaction mechanisms
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- Different CH, reaction mechanisms at different . conditions (lean vs. rich vs. stoic)

 Reactions under stoic condition is most important but is also most complicated
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Summary

Flex-fuel and Ethanol emission

« Conversion of Ethanol is not difficult; However, selectivity is the main challenge
- High selectivity to CH, under certain conditions on a TWC catalyst
 The CH4 selectivity can be reduced by optimizing catalyst formulation

« PGM-support interactions and tandem/chain reactions between PGM species

CNG and CH, emission
« CH, emission control is important for both CNG and flex-fuel vehicles
- Both Pt and Pd are active for CH, under different conditions

- CH, conversion under stoic condition is most complicated, which requires careful tuning Pt
and/or Pd by tuning the oxidation state and PGM-support interactions

'M The data included herein were collected in a JM laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing.
The data do not represent a guarantee that the tested catalyst system will pass the relevant emissions legislation. CONFIDENTIAL
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