

Future Challenges of Alternative Fuel Applications on Gasoline Vehicles

ECMA Conference, 7 & 8th October 2025, New Delhi

Alternative Fuels and ethanol fuel facts

- Renewable fuel from biomass
 - Corn starch ethanol demonstrates positive energy balance
 - Cellulosic ethanol lower levels of life cycle GHS emissions
- Higher octane number than gasoline, lower-octane gasoline is blended with ethanol to attain the standard 87 octane
- Less energy density than gasoline
- E10 and E85 are typically used from blends of gasoline and ethanol

- EtOH remains un-combusted in a vehicle exhaust in significant quantities
- Increased methane emission due to EtOH decomposition

Ethanol Blending of Gasoline

Summary of Research 09/2025, Maria Vlachou

Results contained here:

• Lab reactor perturbed light off testing (λ =0.99) on 7 TWC powder components across 5 conditions: E0, E10, E20, E85 & E100

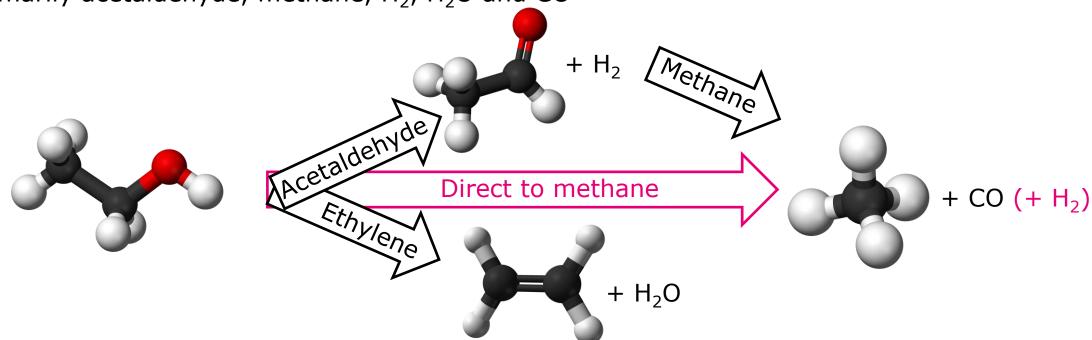
Conclusions

- Significant acetaldehyde and methane make is seen due to ethanol cracking on the TWC
 - Ethanol cracking begins at v. low temperature & before THC conversion (or other conversion)
 - Acetaldehyde-make correlates with ceria content
 - Pd produces more methane than Rh or Pt (easier for Pd to break the C=C bond)
 - No formaldehyde-make is seen
 - Significant ethylene-make is seen for Pt/alumina (some for Pd/alumina)
- Increasing ethanol content decreases CO conversions/shifts CO light-off to higher temperature
- Increasing ethanol content increases NH₃ selectivity (but NO_x conv. unchanged)

Perturbed Light-off Test Details

	EO	E10	E20	E85	E100
NO	1500 ppm	1500 ppm	1500 ppm	1500 ppm	1500 ppm
HC 1: Propylene	1800 ppm C1 (600 ppm C ₃ H ₆)	1620 ppm C1 (540 ppm C ₃ H ₆)	1440 ppm C1 (480 ppm C ₃ H ₆)	270 ppm C1 (90 ppm C_3H_6)	-
HC 2: Propane	900 ppm C1 (300 ppm C_3H_8)	810 ppm C1 (270 ppm C ₃ H ₈)	720 ppm C1 (240 ppm C ₃ H ₈)	135 ppm C1 (45 ppm C_3H_8)	-
HC 3: Ethanol	-	100 ppm C1 (50 ppm $CH_3CH_2OH)$	200 ppm C1 (100 ppm $CH_3CH_2OH)$	850 ppm C1 (425 ppm CH_3CH_2OH)	1000 ppm C1 (500 ppm CH ₃ CH ₂ OH)
CO base	0.73%	0.73%	0.73%	0.73%	0.73%
H2 base	0.24%	0.24%	0.24%	0.24%	0.24%
O2 base	0.59%	0.56%	0.53%	0.34%	0.30%
CO pert	1.47% (2.2% total rich)	1.47% (2.2% total rich)	1.47% (2.2% total rich)	1.47% (2.2% total rich)	1.47% (2.2% total rich)
H2 pert	0.49% (0.73% total rich)	0.49% (0.73% total rich)	0.49% (0.73% total rich)	0.49% (0.73% total rich)	0.49% (0.73% total rich)
O2 pert	1% (1.59% total lean)	1% (1.56% total lean)	1% (1.61% total lean)	1% (1.34% total lean)	1% (1.30% total lean)
Total C from HCs	2700 ppm	2530 ppm	2360 ppm	1255 ppm	1000 ppm
Total H from HCs	6000 ppm	5700 ppm	5400 ppm	3450 ppm	3000 ppm
H:C Ratio of HCs	2.22	2.25	2.29	2.75	3
Total O from HCs	0 ppm	50 ppm	100 ppm	425 ppm	500 ppm

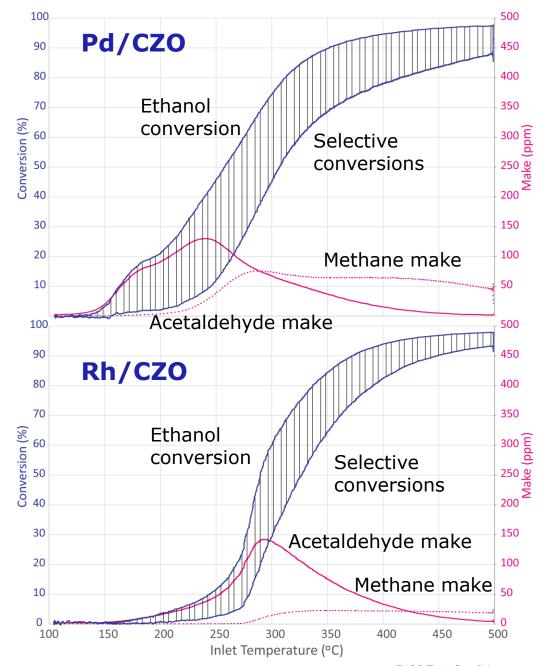
 CO_2 : 14%, H_2O : 5%, perturbation frequency: 0.167 Hz (3 s rich, 3 s lean), Perturbation Amplitude: 0.05, Average Lambda: 0.99, Ramp rate: 10°C/min A lean pretreatment in 5% O_2/N_2 and held at 500°C for 15 mins was performed between tests.


TWCs were aged via $\underline{\text{redox ageing }}(\lambda=0.99\pm0.05 \text{ every 5 mins})$ at 950°C for 16 h.

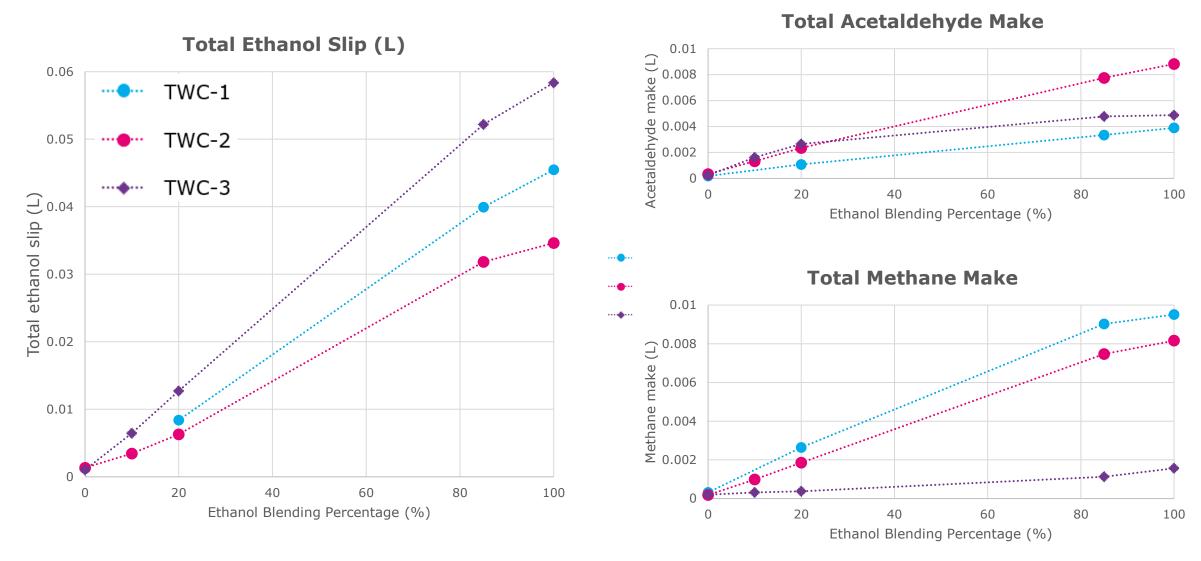
Important to know

Ethanol Cracking

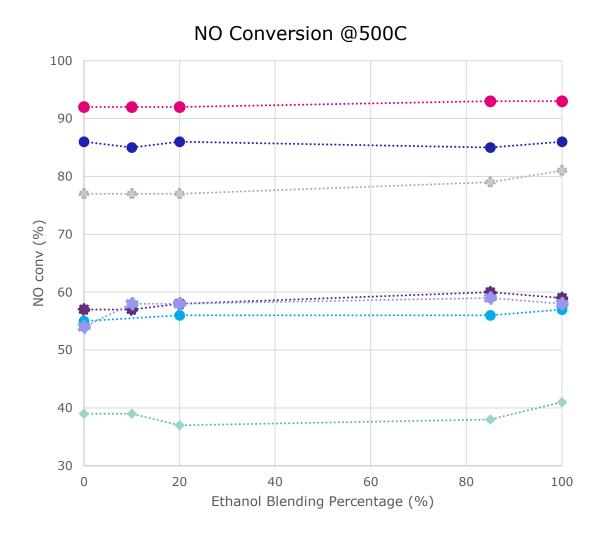
Before "true" conversion, ethanol decomposes or "cracks" into other species via the TWC, primarily acetaldehyde, methane, H₂, H₂O and CO

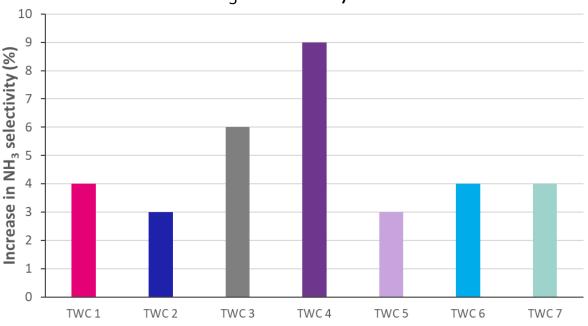


- Smaller amounts of other HCs such as ethylene, ethane and propane are also produced (before conversion)
- Methane is still produced (and unconverted) by the end of the test at 500°C


Ethanol Conversion

- Ethanol conversion, through cracking, occurs relatively early; but this reaction not very selective
- Acetaldehyde is formed during EtOH light off, which is further converted into CH₄ at higher temperatures
- A "Gap" of undesired products is seen during the entire temperature window

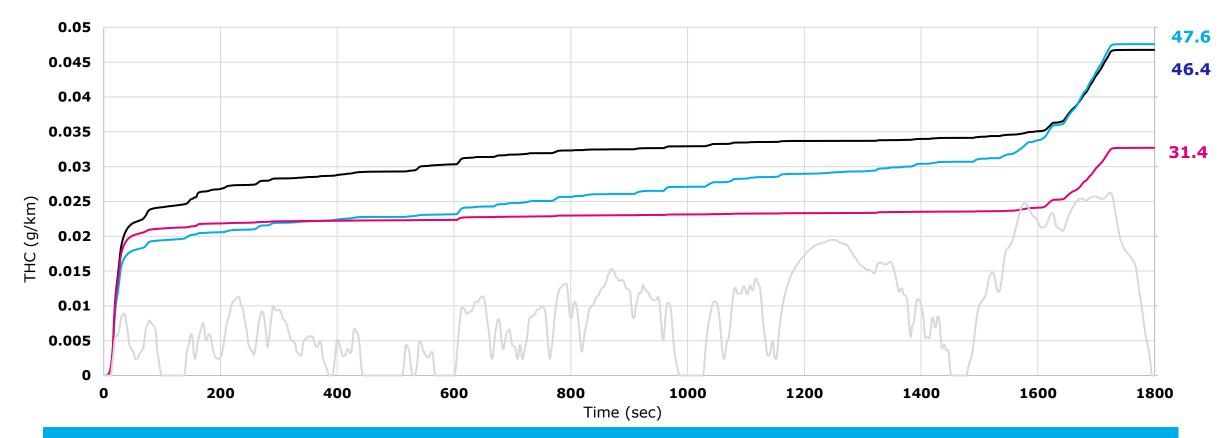

TWCs that reduce ethanol slip forms more intermediates due to cracking



NO_x Activity Changes

No change to NO conversion, but NH₃ selectivity increases (N₂ selectivity decreases) with increasing ethanol content

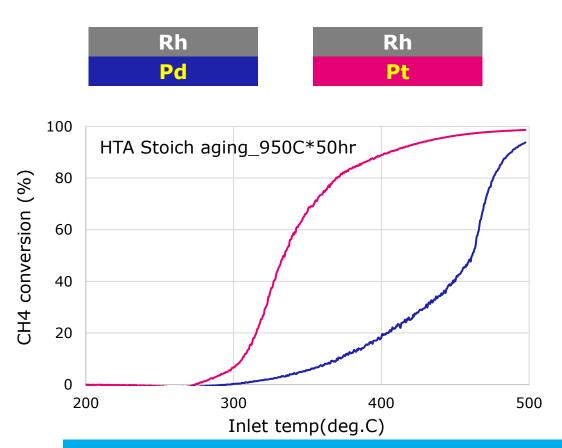
Potentially due to increasing the H:C ratio with increasing ethanol content, i.e. 3 vs 2.22 for E100 vs E0

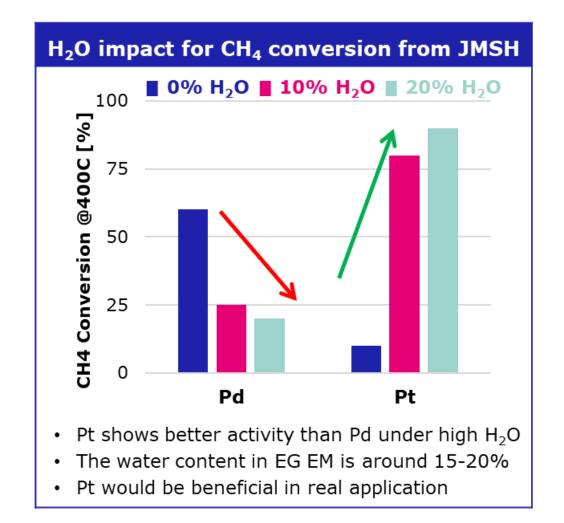


Bi-fuel CNG vehicle tests

WLTP cycle

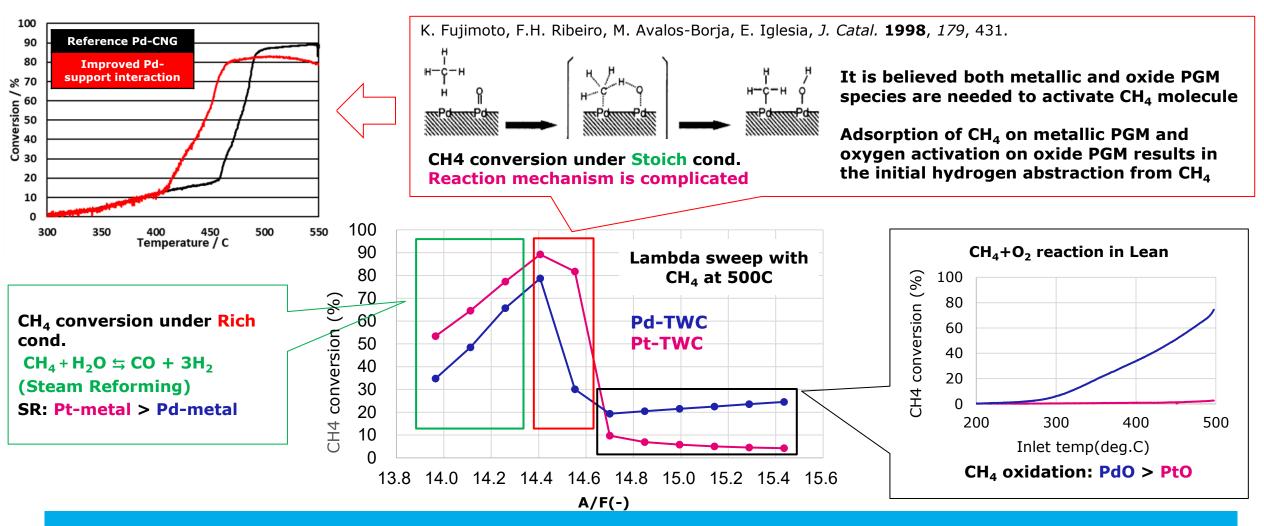
Aging condition: 300hrs/950C+850C/redox


- 1 Market catalyst (Pd/Rh)
- 2 JM TWC design (Pt/Pd/Rh)
- 3 JM CNG design (Pt/Pd/Rh)



- TWC design provide significantly improved LO, but lack of CH₄ conversion at high T
- CNG design significantly improves CH₄ conversion while still providing good light off

CH4 conversions on Pd and Pt catalysts



Pt is more active for steam reforming which benefits by H₂O in the feed Pd converts CH4 by oxidation which is inhibited by H₂O in the feed

CH₄ removal reaction mechanisms

- Different CH₄ reaction mechanisms at different λ conditions (lean vs. rich vs. stoic)
- Reactions under stoic condition is most important but is also most complicated

Summary

Flex-fuel and Ethanol emission

- Conversion of Ethanol is not difficult; However, selectivity is the main challenge
 - High selectivity to CH₄ under certain conditions on a TWC catalyst
 - The CH4 selectivity can be reduced by optimizing catalyst formulation
 - PGM-support interactions and tandem/chain reactions between PGM species

CNG and CH₄ emission

- CH₄ emission control is important for both CNG and flex-fuel vehicles
- Both Pt and Pd are active for CH₄ under different conditions
- CH₄ conversion under stoic condition is most complicated, which requires careful tuning Pt and/or Pd by tuning the oxidation state and PGM-support interactions

Johnson Matthey