

Technical challenges in Diesel Natural Aspirated Engine to meet TREMV Norms in Agricultural Segment

Presented by
Tauseef Alam
International Tractors Limited
(Sonalika Tractors)

Content of Presentation

- Company's Profile
- Product Portfolio
- Mechanization status of India
- Emission Road map in India
- Tractor Application & Duty Cycle
- Technical Approach for New Engine development
- Technical Challenge and Mitigation
- Summary & Way Forward

Company Profile

Sonalika: International Tractor Limited

- Being associated with 17+ lakh customers across 150 countries around the world.
- Manufacturing the customized and widest heavy duty tractor range in 20-120 HP and 70+ implements for the world.
- Owning the **World's largest tractor manufacturing facility at Hoshiarpur** in Punjab that caters to the varied needs of customers across the globe.
- Clocking its highest ever annual overall market share of 15.3% in FY'24 and biggest ever 1,53,764 overall annual tractor sales in FY'25.
- 1000+ channel partner network, 15,000+ retail points and 375+ stockiest, the company remains as close as possible to customers in addressing their requirements.
- Being the only tractor brand chosen by Govt. of India to contribute for the inspirational project of Niti-Aayog to double
 the farmer's income in the country.

Product Portfolio for Domestic Market

50 HP

40 HP

30 HP

20 HP

Sikander 4WD

DI & RX Sikander 39-49 HP

55 60 65 70 75 12+12

> **DI & RX Sikander DLX** With Multispeed 42-49 HP

47/50/55 III 12+3 55 TP 12+12

- **Higher Torque in the segment**
- **Superior Performance**
- **Biggest Engine Volume in Segment**
- **Fuel Economy**

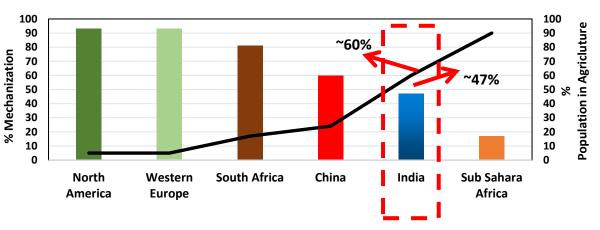
Farm Segment in India

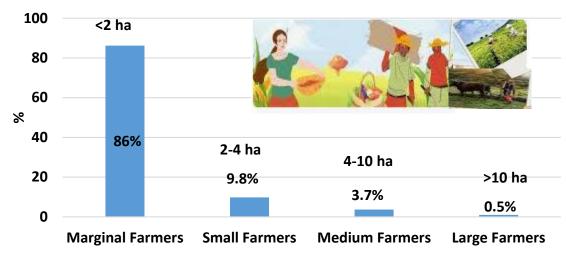
India is one of the largest agricultural produce country in the world where tractor usage is continuosly increasing.

- Usage pattern of tractors are very unique and distinctive in India.
- In India, majority of tractor segment falls in between power band category of 25-50 hp based on application and small land holdings- less than one tenth of that in Europe.
- Farming practices & conditions between India and Europe are different like Wet Land Puddling & usage of tractors in threshing in extreme ambient temperatures up to 48° C resulting in dust/straw/mud contamination.
- This transition must be carried out with minimal disruption to sustainable agriculture practices and should leverage indigenously available, field-ready robust technology.

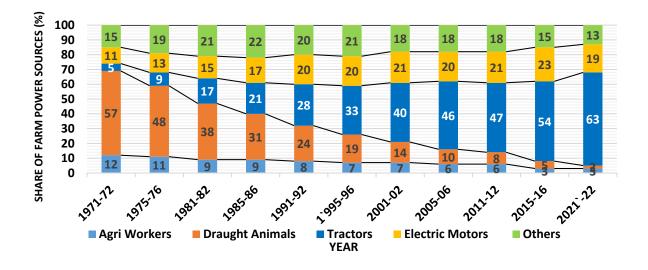
Farming Pattern and
Farm Holding
Capacity are
different from

Europe.


Farm Mechanization in India

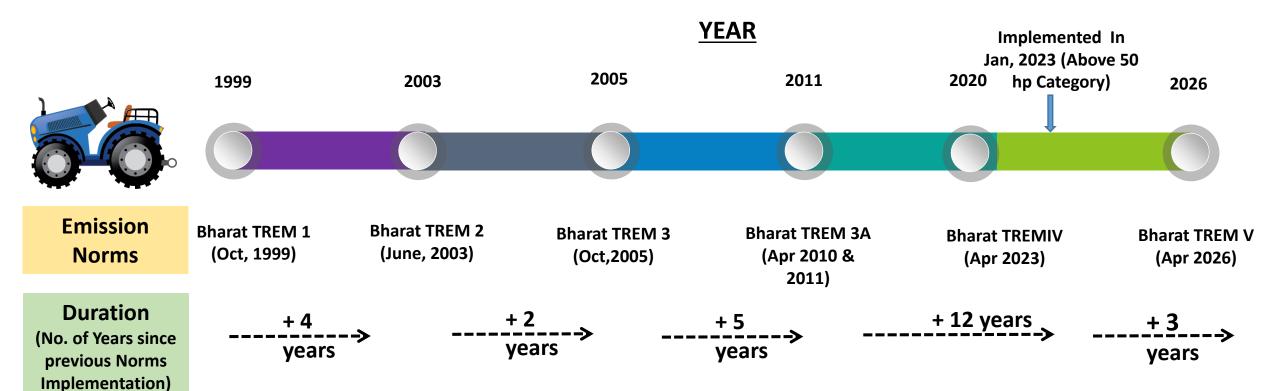


Mechanization Status



Farmers Classification

Farm Power Sources


- Even though nearly 60% of population is engaged in agricultural works, mechanization is only 47%.
- With the increasing trend of tractors as farm power sources, there is lot of scope for tractors.

Source: FAOSTAT, CIAET Bhopal, Ministry of Agriculture

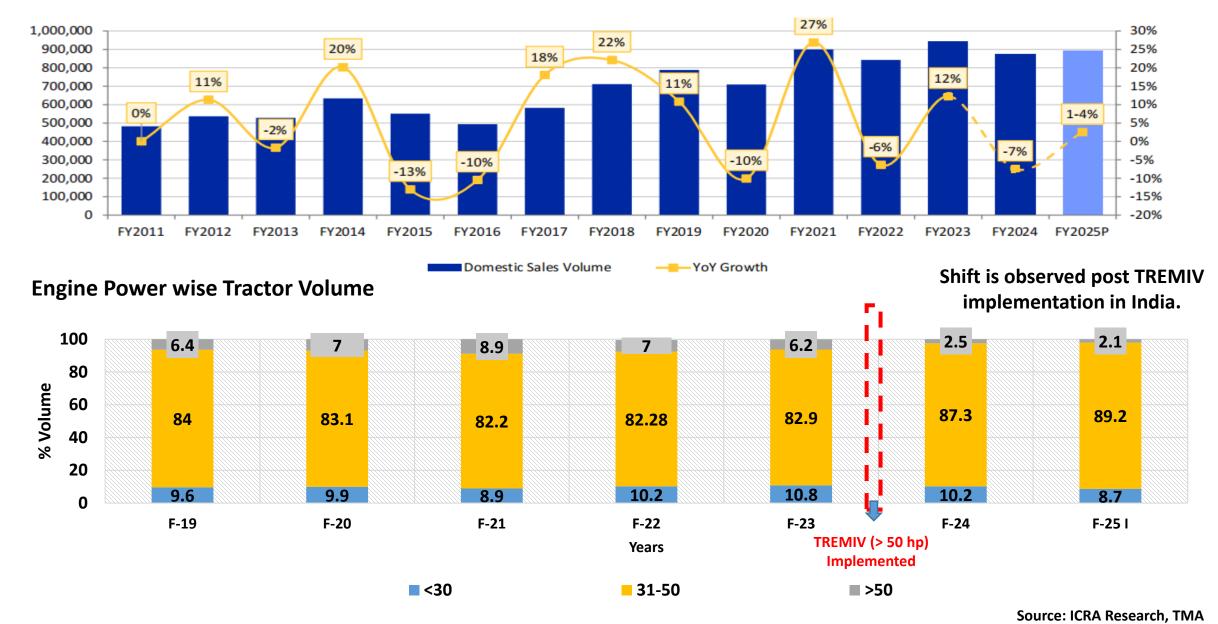
Emission Road Map in Agricultural Segment

Bharat TREMIV

Applicable for Tractors above 37 kW (50 hp)

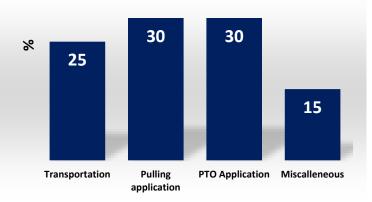
Emission Comparison in different Power Band Category

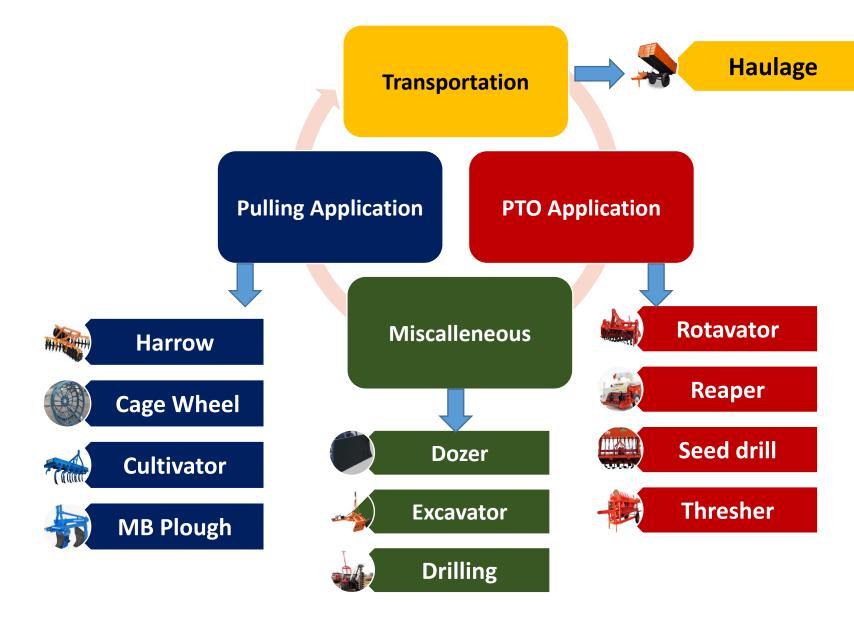
Engine Power	Date	СО	НС	HC+NOx	NOx	PM
kW		g/kWh				
Bharat (Trem) Stage III A						
P < 8	2010.04	5.5	-	8.5	-	0.8
8 ≤ P < 19	2010.04	5.5	-	8.5		0.8
19 ≤ P < 37	2010.04	5.5	-	7.5		0.6
37 ≤ P < 75	2011.04	5	-	4.7	-	0.4
75 ≤ P < 130	2011.04	5	-	4	-	0.3
130 ≤ P < 560	2011.04	3.5	-	4	-	0.2
				- 40%		- 97%


Engine Power	СО	НС	NOx	PM	PN	
kW	g/kWh				1/kWh	
Trem Stage IV						
37 ≤ P < 56	5	4.	7*	0.025	-	
56 ≤ P < 130	5	0.19	0.4	0.025	-	
130 ≤ P < 560	3.5	0.19	0.4	0.025	-	
Trem Stage V						
P < 8	8	7.5*		0.4	-	
8 ≤ P < 19	6.6	7.5*		0.4	-	
19 ≤ P < 37	5	4.	7*	0.015	1×1012	
37 ≤ P < 56	5	4.	7*	0.015	1×1012	
56 ≤ P < 130	5	0.19	0.4	0.015	1×1012	
130 ≤ P < 560	3.5	0.19	0.4	0.015	1×1012	
P ≥ 560	3.5	0.19	3.5	0.045	-	
* NOx + HC						

➤ If TremV is implemented as per notification, there will be leapfrogging in sub 37 kW Category.

Tractor Sale based on Power Segment in India

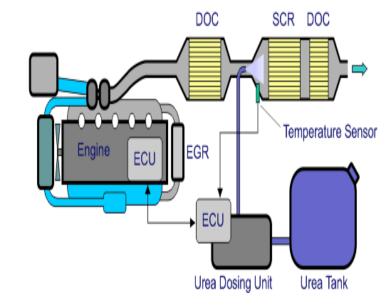


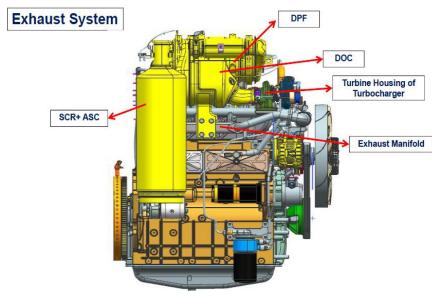

Tractor Application in India Agricultural Industry

Application based Tractor Usage Pattern

Loading Pattern in Different Tractor Applications

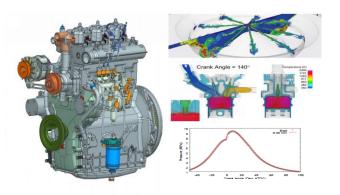
Implem	nent	Implement Size	Loading Condition	Remark
Cultivator		17 /15 Tyne	Partial to Full	Engine load Depends:
Harrow		12 X 12	Partial	 Soil condition Depth of operation
M.B Plough	TIV	3 Bot Rev	Partial to Full	3. Driving pattern <u>Duty Cycle</u>
Haulage (Loaded)		20 Tonne	Partial	Sand Branches and
Rotavator		10 ft	Partial to Full	Load (Nm)
Haulage (Empty Trailer)		Empty Trailer	Partial	OD 800 1000 1200 1400 1600 1800 2000 2200
Bare Tractor		Bare Tractor	Partial	Engine



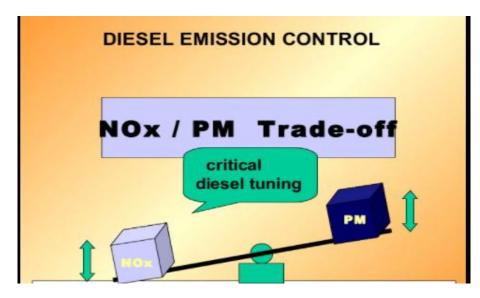

New Engine Development

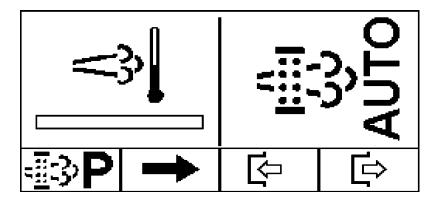
Drivers for New Engine & EAT Development

- Emission Regulation
- Efficient performance over wide range of operation
- Limited space
- Real World Emission
- OBD & In Service Monitoring
- Cost Efficiency
- Durability
- NVH

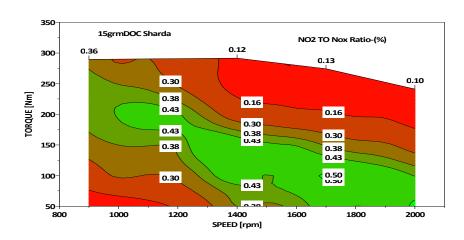


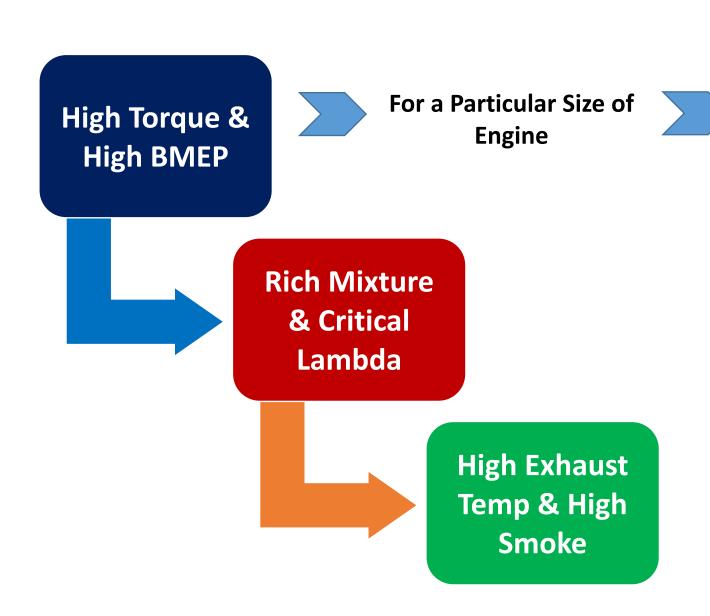
Technical Approach for Engine Development in TREMV

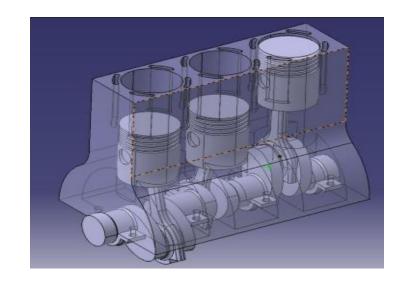

- Base Engine Design Optimization
- Combustion
 Optimization
- Air Handling system
- Optimized fuel system
- After Treatment selection
- Calibration Optimization
- Testing and Validation

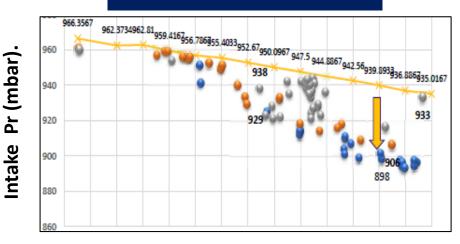

Parameter Change	Effect on Nox	Effect on PM
Cycle Temperature	1	I
Excess Air in Bowl	1	1
Longer Premixed Phase	1	1

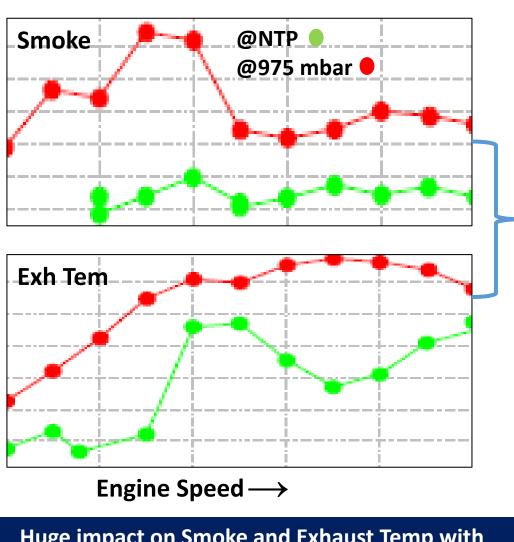
Technical Challenges in DPF


- Packing the DPF under hood on Tractor
- Integration of additional sensor due to DPF: Delta Pressure & T5 Sensor
- Integration of DPF will bring Common Rail Integration in Engine which will bring additional cost and complexity in system
- Regeneration Strategy and its interrelated link from cluster is again new feature for customer
- Regeneration of soot will lead to penalty of Fuel Economy for Farmer
- High Exhaust Temperature and Skin Temperature from Exhaust Manifold
 & After Treatment
- Limitation of BMEP for Temperature and Soot is challenge with DPF
- Ash accumulation from Engine Lube Oil with DPF

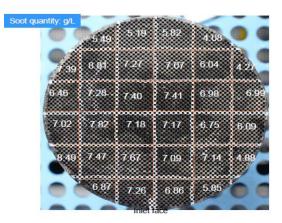


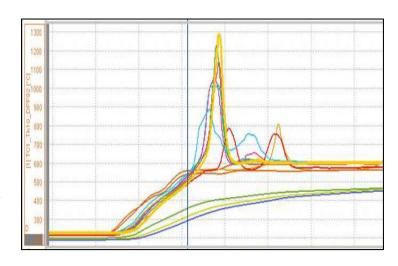


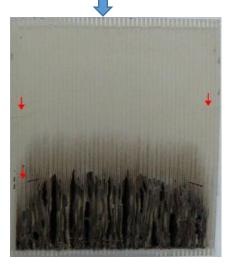

Technical Challenges of NA Engine Development to meet TREMV


Intake Manifold Pressure

Technical Challenges in NA Engine Development

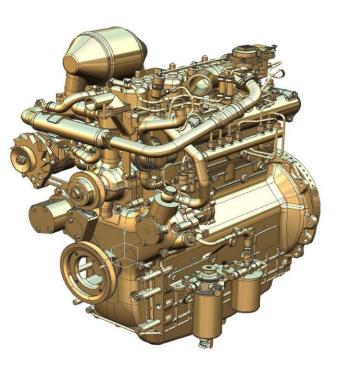



Huge impact on Smoke and Exhaust Temp with slight change in ambient pressure.


High Soot Accumulation

Soot Distribution

Temperature Shoot up



DPF Failure

Air Layout Optimization

BMEP Adaptation to ensure safe Operation

Lambda & Smoke Adaptation

Exhaust Temp Optimization and Altitude Correction

EGT Optimization for getting improved UI

SML Readjustment

Summary

- TREMV Emission Norms will bring complexity of the current system.
- Considering the diversity in applications across Indian Agricultural Segment, it will be challenging.
- Even though lot of testing and Validations has been done, unseen failures from the field likely to come which will foster new opportunities and innovation.
- With the implementation, responsibility of OEM and it's technical partners will increase.

What Next: Government Focus in Alternate Fuel Technology

Panchamrit - India's National Statement @ **COP26 (Conference of the Parties)**

- 1. Achieving net-zero by 2070
- 2. Reducing total projected carbon emissions by one billion tonnes starting now till 2030
- 3. Increasing renewable energy component to 50% of our total energy requirements by 2030
- 4. Reducing carbon intensity by 45% by 2030
- 5. Increasing non-fossil energy capacity to reach 500 GW by 2030

- Blending of Ethanol in Diesel due to surplus amount and production of Ethanol
- Usage of Bio Diesel from B7 to B15 and above blending to reduce the import of Diesel Fuel

Mono Fuel or Dual Fuel: CNG, Methane Gas and HCNG

- Focus on CNG as Mono Fuel
- Dual Fuel with CNG and Bio CNG or Diesel with CNG
- Gasoline in CNG Engine with turbo

Hydrogen Fuel, DME and other Alternate Fuel

- Government focus in Zero Neutral Emission gas
- Alternate Fuel: DME, Methanol 100

Electrical Tractor

Electrical Tractor push on farm segment

सडक परिवहन एवं राजमार्ग मंत्रालय MINISTRY OF ROAD TRANSPORT AND HIGHWAYS

Thank a lot for Attention!!