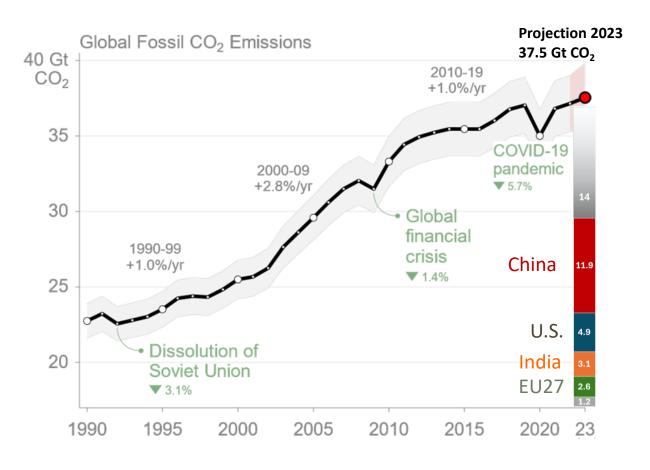
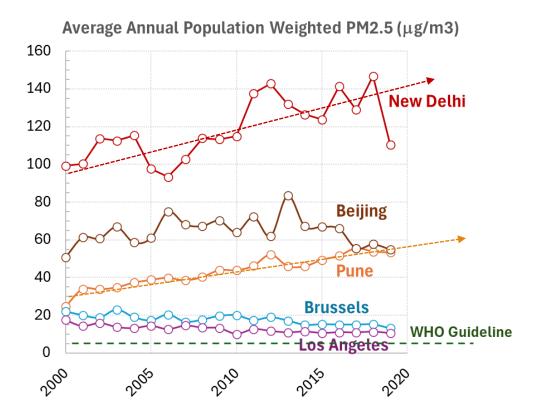


PRESENTED AT ECT CONFERENCE, NEW DELHI, OCTOBER 7TH, 2025

Global Perspectives on Transport Decarbonization

- And Implications for Indian Context


Dr. Ameya Joshi



Reducing GHG and criteria pollutant emissions from road transport is a priority India is playing a major role in advancing the standards and technologies

Air quality in major cities in India is still far from the WHO guideline – and has deteriorated in the last two decades

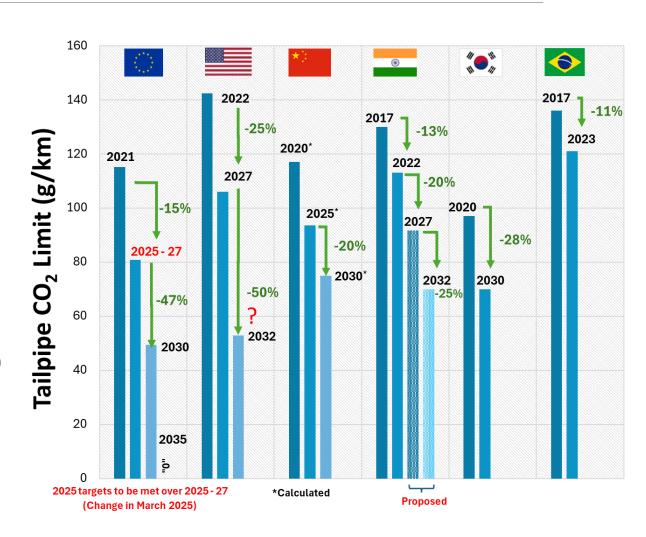
Source: Global Carbon Project

Source: State of Global Air 2022

Emission Standards for Light-Duty Vehicles in Major Markets

Global Trends

US

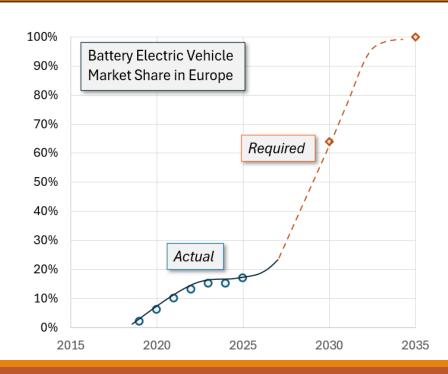

- MY 2027 CO₂ standards very likely relaxed / rescinded
- Future NHTSA CAFE standards will not include EV projections when setting standards

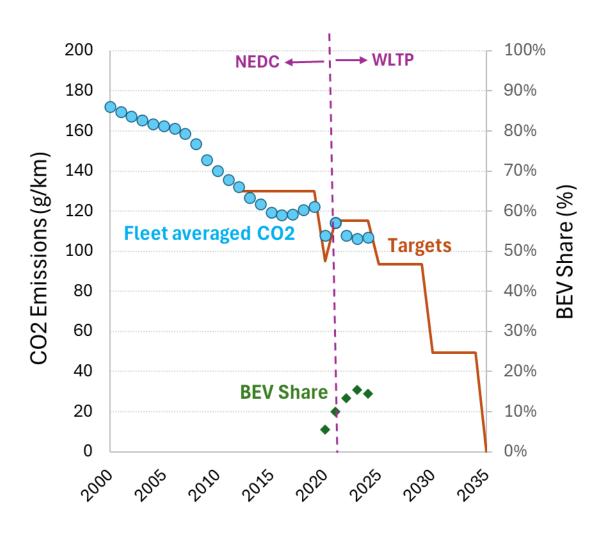
Europe

- 2025 standards to be met over 3 years (2025 2027)
- 2035 ICE phase-out hotly debated
- Role of e-fuels and renewable fuels explored
- UK Hybrids allowed beyond 2030 (only ZEVs beyond 2035)

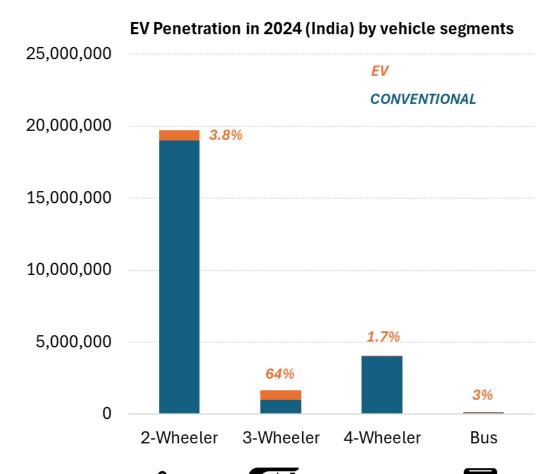
<u>India</u>

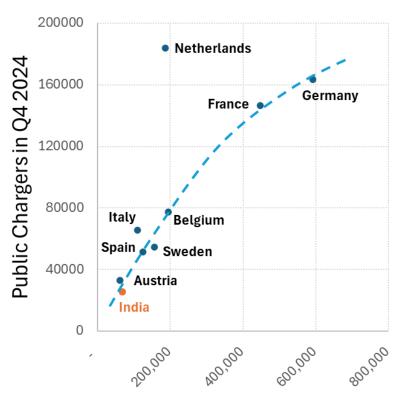
- New CAFE 2027 2032 standards proposed
- Concessions for smaller cars (3 g-CO₂/km)
- Carbon neutrality factor for alternate fuels and hybrids



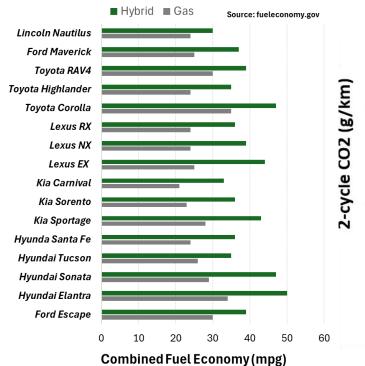

India should be wary of the "European experiment" Pragmatic approach: Promote electrification while also upholding criteria pollutant standards

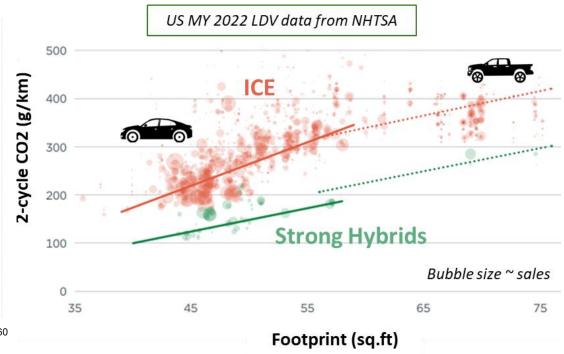
ACEA & CLEPA letter to EU Commission, Aug 27th


"Meeting the rigid car and van CO2 targets for 2030 and 2035 is, in today's world, simply no longer feasible"


The EU risks missing the turn on its automotive transition – September's Strategic Dialogue is the chance to correct course

EV adoption in India is still in the early stage Conventional vehicles expected to be around for decades and need to be improved





Hybrids are increasing market share – and are seen as a cost-effective choice for CO₂ reductions

Avg. fuel economy improvement: 12.5 mpg
Avg. MSRP difference = \$1,800

Reduction in CO_2 emissions with strong hybridization Cars ~ 43% | Light-duty trucks : 29 - 41%

Additional 15% reduced CO₂ expected at a modest price premium of \$300 - \$800

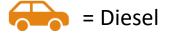
Future improvements in hybrid CO₂ emissions

- Dedicated hybrid engines with BTE > 45%
- Advanced engine oils
- Higher injection pressures
- Electric supercharging and intercooling
- Improved air handling
- In-cylinder fuel reforming
- Dedicated e-turbochargers
- Active pre-chamber ignition
- Variable compression ratios
- Waste heat recovery (e.g. e-turbo)
- Higher compression ratios
- Water injection
- Lean combustion
- Electrically heated catalysts
- Larger batteries

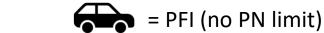
India should implement best elements of Criteria Pollutant Tailpipe Standards from other Major Markets

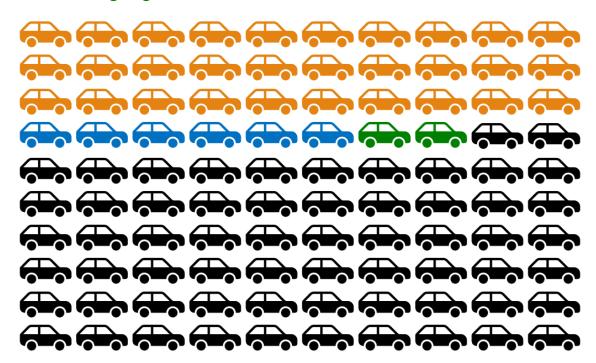
Light-Duty	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
US-CARB						ACC 2.0 : Criteria + ZEV *							
US-EPA	Tier 3						Tier 4*(NMOG+ NOx=15 mg/ mi, PM = 0.5 mg/ mi) + GHG (50% reduction from 2027 - 2032)						
Europe 💮	Euro 6d	6d Euro 6e					Euro7						
China **	China 6a		China 6b (w	China 6b (w/ RDE)				China 7 (~ Euro 7) +Tier 3 elements					
India	BS 6 Stage	1	BS 6 Stage 2 (w/ RDE)				WLTP BS7 (~ Euro 7)						
Brazil 🔷	L6	PROCONV	EL7 PROCONVEL8			L8							

^{*}EPA is reviewing Tier 4 standards, CARB authority for ACC 2.0 revoked – but work on ACC 3.0 starting

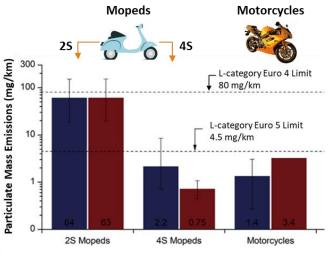

Overall Approach in Europe and US for successive tightening --

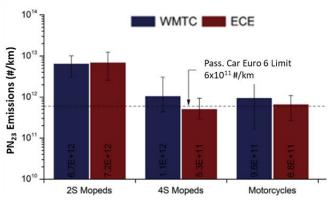
- Ensure standards are set for pollutants at levels that can be measured (e.g. PN_{10} or 0.5 mg/mi)
- Ensure standards result in implementation of best available technology (e.g. GPFs, right sized canisters for evap)
- Ensure standards are met over all reasonable real-world ambient and driving conditions (RDE in Europe)
- Ensure standards are fuel and technology neutral (GDI = PFI = Diesel = Hybrids = ...)


Upcoming standards must limit particulate emissions from <u>all</u> vehicle and fuel types


BS VI PN limit applies to direct injected engines only

→ ~ 60% of new light-duty vehicles without any PN standard!





Particulate emissions from 2W can be higher than Euro 6 pass. car PN limit

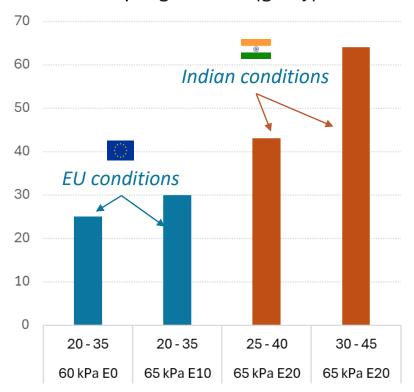
X 18 - 20 million sold each year

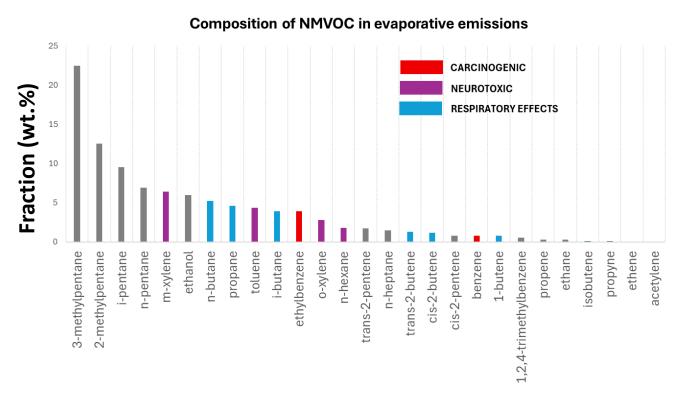
India is NOT Europe It's time for setting standards that relate to local conditions


Indian urban density is much higher than Europe → higher population at health risk for breathing polluted air

Population of Delhi and Mumbai is greater than that of 10 European cities combined!

Upcoming test protocols should reflect Indian ambient and driving conditions


Comparison of % days > 35 C in major cities in India & Europe


Need to address higher evaporative emissions in India and their impact on human health

Vapor generation depends strongly on diurnal temperature profile and fuel

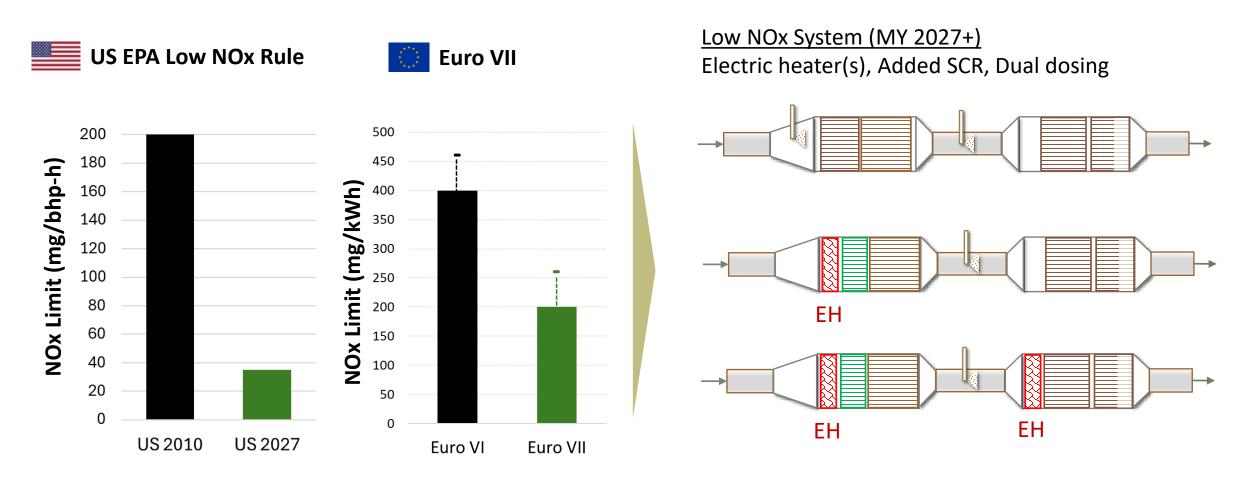
Vapor generated (g/day)

Some of the constituents from the emissions are hazardous to health

Source: EMEP/EEA air pollutant emission inventory guidebook 2019

And it's a win-win ...

Evaporative emission control system will save fuel (and \$\$) for the consumer


Source: ECMA webinar, June 2025

On-road and Non-Road Heavy-Duty Emission Standards in Major Markets

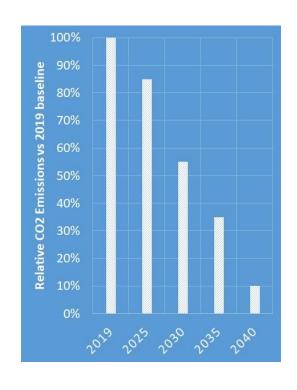
US / California standards for MY 2027+ uncertain

Heavy-Duty On-Road	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
US-CARB	US 2010	•		Low NOx Omnibus : 75% NOx redn.			EDA Low NOv						
US-EPA	US 2010, GHG	Phase 3		EPALOW NOX				(350 mg/bhp-hr) + GHGPh. 3					
Europe	Euro VI-E (PN6e11 #kWh, cold-start,)							Euro VII NOx90 - 350 mg/kWh, PN (10nm) 2e11 #kWh					
China	China Vla		China VIb (w/	VIb (w/ RDE)				China VII ~ E.	China VII ~ Euro VII + USLLC?				
India	BS VI Stage 1		BS VI Stage 2 (w/ RDE)					BS VII (~Euro 7)					
Brazil	PROCONVE7	(~Euro V)	PROCONVE 8 (~ Euro VI-C)										
Heavy-Duty Non-Road	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
US-CARB	Tor 4 Final								Tier 5 ? (NOx 90% redn., First GHG rule)				
US-EPA	Tier 4 Final		SORE: Zero emitting < 19 kW (25 hp)						Tier 5?				
Europe	Stage V	Stage V				REVIEW				Stage VI ?			
China	China III ~ EU III A China IV (~ EU III B) + PN limit						China V						
India	CEVIV(Apr'2	:1)	TREMIV(Apr '23)	CEV V 1/25	V V 1/25 TREM V Agr. (4/26)							
Brazil	Proconve MAR-I ~ US Tier 3 / EU III A							MAR-II					
Japan	Tier 4 Final						Tier 5?						
Korea (*●*)	Tier 4 Final Stage V						Stage VI ?						

Low NOx Standards in US and Europe & Advanced Control Technologies

+ Low load cycle – Important for India! PM Limit reduced by 50%

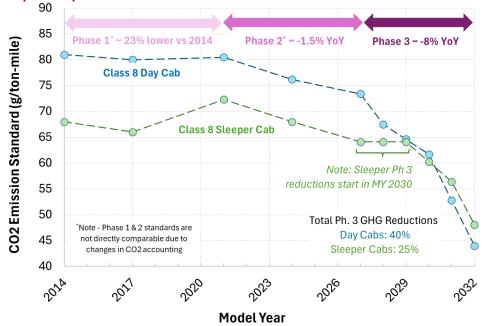
PN Limit reduced to 9x10¹¹ #/km on RDE Includes particles down to 10 nm


Heavy-Duty Engines are meeting Low NOx standards (while emitting lower GHG & particulates)

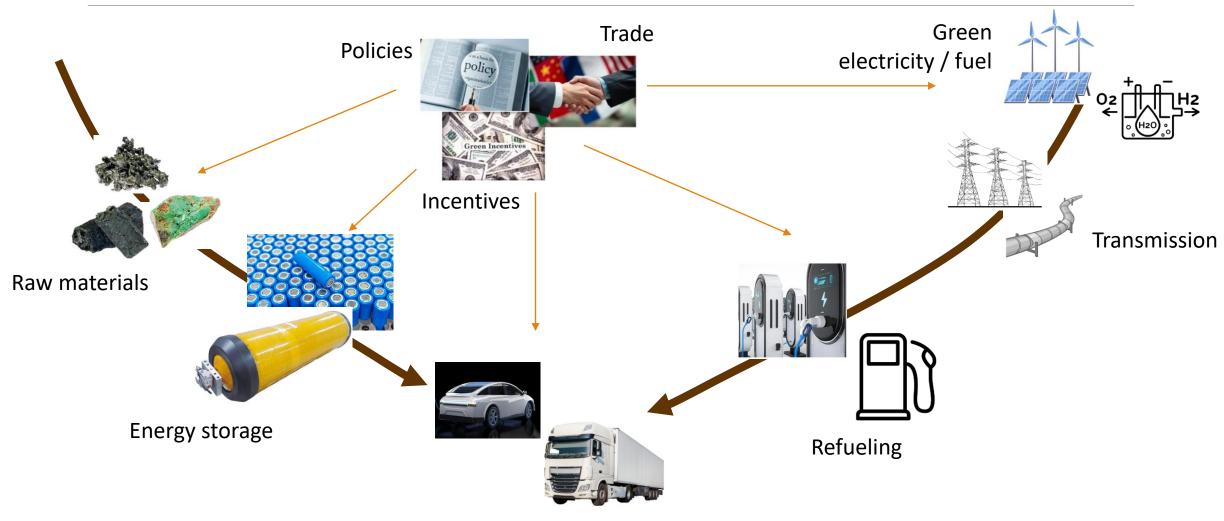
Engine	Navistar S13	PACCAR MX-13	Volvo D13	Cummins 2027 X15	Cummins X15N	Cummins X10	Cummins B6.7 Octane (gasoline)
Engine Peak Power, Max. Torque	13L, 6-cyl. 515hp-1450 lb.ft	13L, 6-cyl. 405hp-1,650 & 510hp-1,850 lb.ft	13L, 6-cyl. 455 hp-1,650 lb.ft	15L, 6-cyl. 605hp-2,050 lb.ft	15L, 6-cyl. 500 hp-1850 lb.ft	10L, 6-cyl. HD: 450 hp- 1650 lb.ft MD: 380 hp- 1250 lb.ft	6.7L, 6-cyl. 300 hp, 660 lb.ft
After- treatment System	Hot, uncooled EGR SCR + DPF + SCR with dual dosing No DOC	48V EH in cc- position DOC/DPF/EH/SCR Longer SCR, 70% 个 vol.	48V EH in ufposition DOC + DPF + EH + SCR	Closed CV, c-EGR Two 48V 5 kW EHs 1st can: EH + DOC-DPF 2nd can: EH + two SCRs in parallel. 7% higher cat. vol., 44% lower ΔP	Closed CV TWC	c-EGR 48V EH Twin-module	TWC

Heavy-Duty CO₂ standards

EU HD CO₂ Standards


- 90% CO₂ reduction by 2040
- ZEV mandate for city buses
- Incentives for ZLEVs
- Penalty of €4,250 per vehicle per gCO₂/t.km exceeded from 2025+
- ZEV defined as vehicle emitting < 3 g/(t·km)

Commission will review regulation by 2027 to assess appropriateness, role of e-fuels, and development of methodology for the assessment and reporting of lifecycle CO_2 emissions.


U.S. Tractor CO₂ Standards

Very likely to be weakened to avoid effective ZEV mandate

- Technology neutral standards
- H_2 -ICE is NOT a ZEV: Default CO_2 emission value = 3 g/hp-hr
- Vehicles with H₂-ICE and neat H₂, CO₂ = 0

Various factors affect the growth and sustainability of alternate fuels

Vehicle (cost, range, model availability, etc.)

Hydrogen is getting increased attention H₂-ICE seen as pathway to utilize H₂, while FC trucks can offer higher fuel efficiency

Volvo to launch hydrogenpowered trucks

2024-05-23

08-04-2024

MAN expands its zero-emission portfolio hTGX Range 600 km

KEYOU Truck "ALL-INCLUSIVE" starts from € 0.58 / km

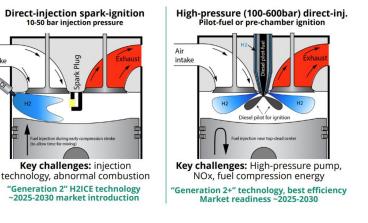
Truck as a service model

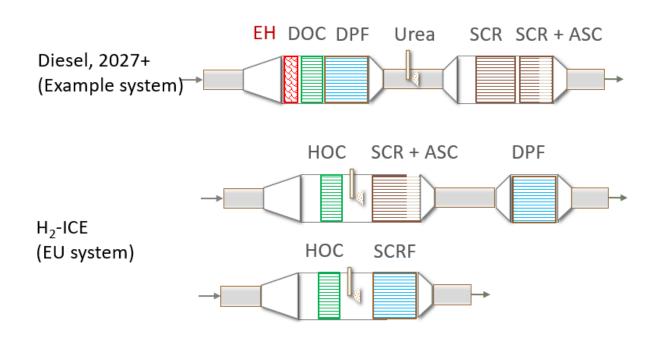
Tata Motors rolls out hydrogen trucks for India

January 30, 2025

40 tonnes of IKEA products hauled by hydrogen ICE-powered truck in Sweden

Holcim H_2 hybrid: On-board H_2 generation, 15% \downarrow fuel consumption


Several H₂ trucks announced - Utilizing both H₂-ICE and Fuel cell technology


Hydrogen ICEs will require a simplified after-treatment system to meet low NOx standards

Spark Ignited Port Injected Direct Injected Port-injection spark-ignition **Key challenges:** power density, abnormal combustion, efficiency "Generation 1" H2ICE technology ~2025 market introduction, retrofits

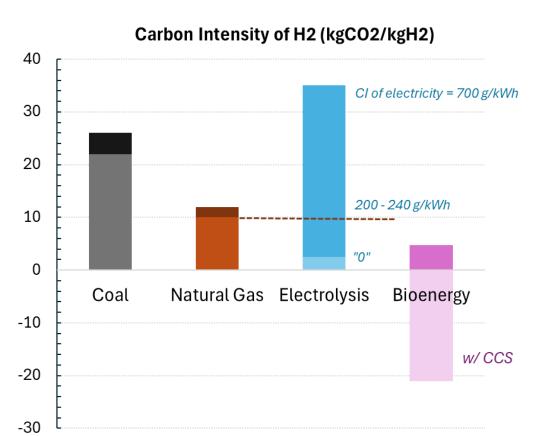
Pilot fuel / Pre-chamber Direct Injected

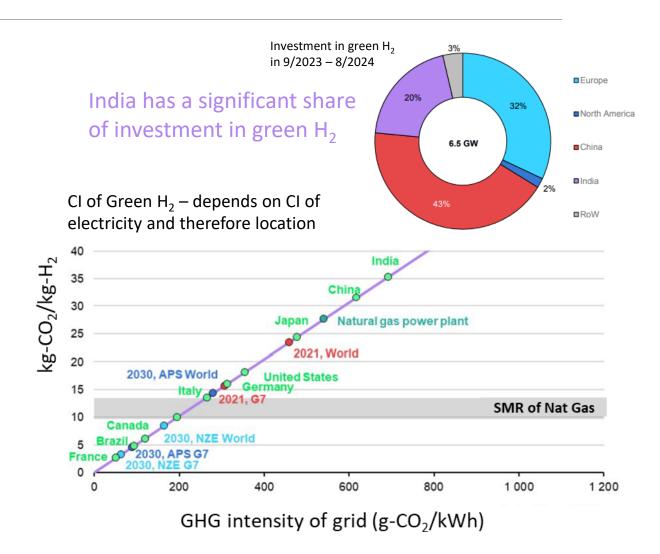
- No HCs / CO in exhaust : DOC \rightarrow HOC
- Ultra-lean: Low engine-out NOx, low DEF consumption
- Filter only oil-based particulates
- Need to understand impact of water in exhaust

Volumetric Efficiency

Market readiness, Complexity, NOx

Direct-injection spark-ignition

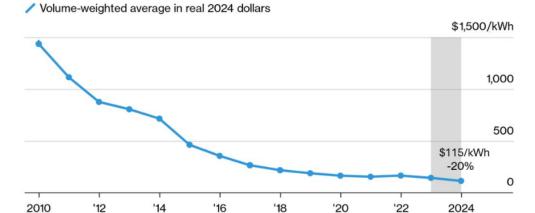

Key challenges: injection


"Generation 2" H2ICE technology

~2025-2030 market introduction

Will the H₂ produced reduce the GHG & criteria pollutant emissions?

Carbon intensity of H₂ depends on the feedstock and use of carbon capture



Batteries continue to get cheaper But supply chain is dominated by China

Lithium-Ion Battery Pack Prices See Largest Drop Since 2017

Lithium-ion battery pack prices



Source: BloombergNEF.

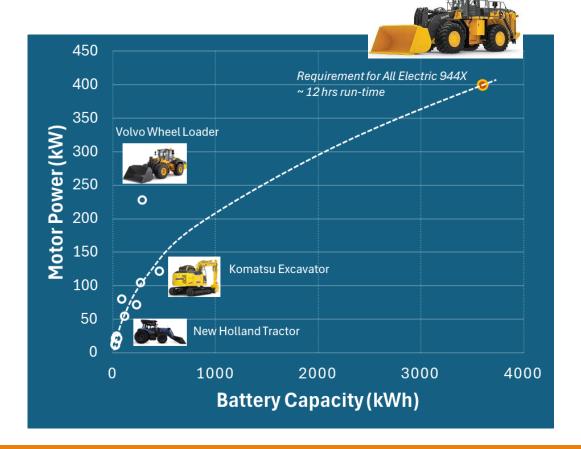
Note: Historical figures have been adjusted to real 2024 dollars. Values are volume-weighted averages across passenger EVs, commercial vehicles, buses, two- and three-wheelers and stationary storage. Includes cell and pack.

BloombergNEF

China dominates the refining and cathode production

"Lithium-Ion Battery Roadmap – Industrialization Perspectives Toward 2030", published by Fraunhofer Institute

Class 8


Total Cost of Transportation for a Heavy-Duty Fleet Electric long-haul trucks cost > 2X that of diesel

- The total cost of transportation for an electric truck increases by over 2X
 - ~ \$290K for diesel
 - \sim \$620K for an EV
- The EV effectively requires almost 2 drivers to deliver the same payload as the diesel, due to limited range
- A mixed realistic fleet of 25 vehicles including Class 4 & Class 6 trucks would require an additional \$3.7M or a 56% increase in cost to convert to electric.
 - That is a non-starter for most small and mid-sized fleets despite any incentives.

Source: Ryder, May 2024

For high-power, continuous operation, electrics are impractical given current battery energy densities India must continue to implement non-road emission norms given the longevity of diesels here

Electric machines are increasing, but mostly limited to compact size – and with limited run time ($\sim 2-6$ hrs)

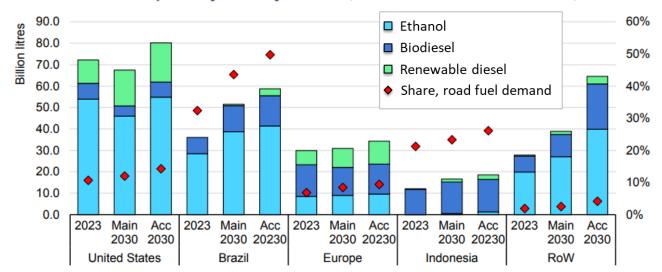
Fully electrifying a wheel loader operating for 12 hours will require 3.6MWh energy, 27 EV batteries, adding 54,000 lbs weight

Diesel – electric solution

13.5L engine works in limited speed range, similar to genset, to power electric drivetrain & batteries

~30% reduction in fuel consumption

Renewable fuel can further reduce WtW GHG


Savings of up to 50% on tire wear

10% cost savings on maintenance

Biofuels growth is a mixed picture across the world

Source: International Energy Agency, Renewables 2024

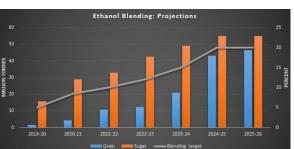
Road biofuel consumption by country and fuel, main and accelerated cases, 2023-2030

<u>US</u>

Road biofuel use is forecast to <u>fall</u> 5B liters by 2030:

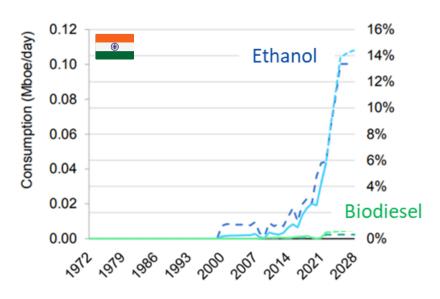
- 8B liters of ethanol due to light-duty electrification
- 3B liters of biodiesel, replaced by renewable diesel
- + 6B liters of renewable diesel

Brazil


Road biofuel use forecast to increase by >15B liters by 2030:

Biofuel blending rate of almost 45% Growth driven by Fuel of the Future Program

→ Increase ethanol blending to 35% and biodiesel to 20%


India

Target 20% ethanol blending by 2025

Source: Roadmap for Ethanol Blending, Govt of India

India biofuels consumption (Mboe/day)

Various technologies being pursued for emission reductions. All have some strengths and weaknesses Only low carbon fuels, retrofits, and scrappage can decarbonize existing fleet

	IC Engine	Hybrid	BEV	H ₂ Fuel Cell	H ₂ ICE	Low C fuels
GHG Reduction	Ref.	+	++ Depends on electricity	+ Depends on H2 "color"	+ Depends on H2 "color"	++
Fueling Infrastructure	Ref.	0				0
Refueling Time	Ref.	0		0	0	0
Range	Ref.	0	-	0	0	0
NOx/PM emissions	Ref.	+	+++	+++	+	+
TCO Total cost of ownership	Ref.	+	++/ Sensitive to battery, electricity prices	++/ Sensitive to H2 price	 Sensitive to H2 price	++
Critical materials	Ref.	-			0	0
Applies to legacy fleet?	-	No	No	No	No	Yes

Production

What matters is CO₂
entering the
atmosphere, not what's
emitted at the tailpipe
→ need policies based
on lifecycle analysis

Transport

Fueling

OTHER

Land-use change
Impact on environment
Environmental Justice

CO₂ capture

Impact on market

VEHICLE

Raw material Components Assembly

Export

Recycle

Disposal

Thank you!

Dr. Ameya Joshi

ameyajoshi@mobilitynotes.com

https://www.linkedin.com/in/joshiav/

