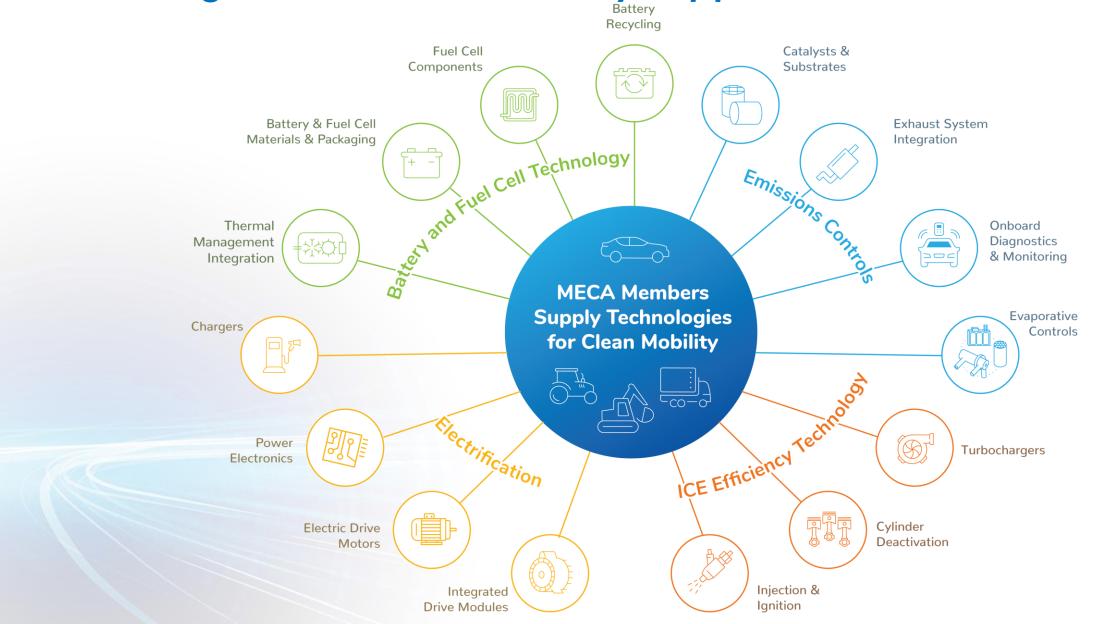
Euro VII RDE Applied to US 2027 Heavy-Duty Emission Controls

Dr. Rasto Brezny


Emission Control Technologies 2025

New Delhi, India

October 7-8, 2025

For 50 years, MECA has been the Credible Voice of Diverse Technologies from Clean Mobility Suppliers

Outline

- U.S. 2027 and Euro VII Heavy-Duty regulations
- Technology demonstration
- Performance over U.S. and European certification and real-world cycles
- Euro VII work-based window analysis results

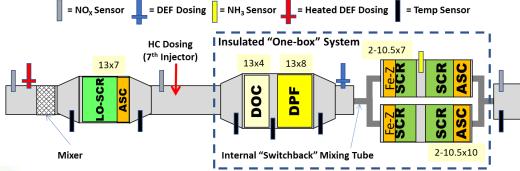
U.S. 2027 Heavy-duty Regulation and Euro VII final

U.S. 2	027	Euro VII		
FTP / RMC NO _x , mg/kw-hr	47	WHTC / WHSC NO _x , mg/kw-hr	200	
Low Load Cycle NO _x , mg/kw-hr	67	n/a		
RDE NO _x Standard, mg/kw-hr	105 (Bin 2)	RDE NO _x Standard, mg/kw-hr	260	
RDE NO _x Low Temp	up to 164 at 5°C, n/a below	RDE NO _x Low Temp	same to -7°C	
RDE Type	2B-MAW, 300- sec window	RDE Type	Work-Based Window (WHTC), 90 th percentile	
n/a	ı	OBM	2.5X standard	
FUL(HHD), km	1,083 M	FUL(HHD), km	700k (875k with multiplier TBD)	

- Proposed Euro VII was similar to U.S. 2027
 - Euro VII final was considerably relaxed
 - The two regulations drive different technology pathways

EPA, CARB, MECA Low NO_x Technology Demonstration Program

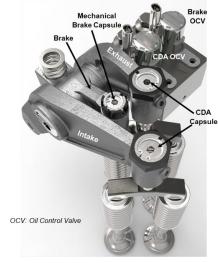
2017 Cummins X15 Engine

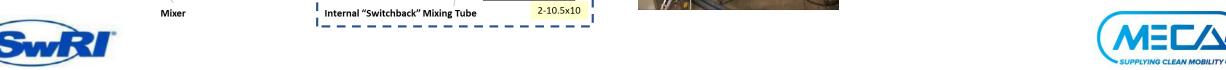


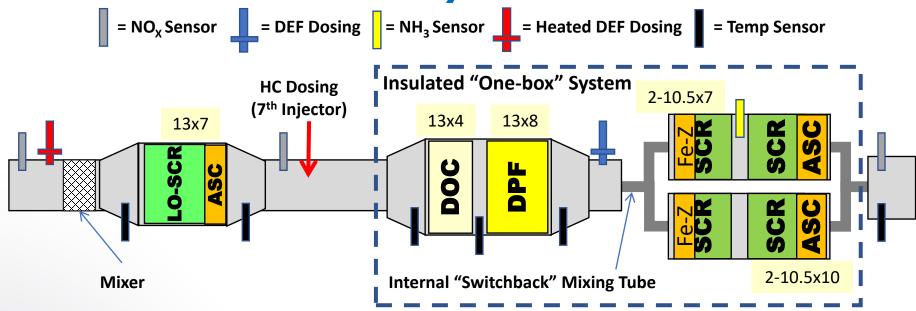
Full System Details SAE Paper 2021-01-0589



Advanced Low NO_x Aftertreatment (Dual SCR-Dual Dosing)


Additional Engine Hardware (Cylinder Deactivation)




Eaton Cylinder Deactivation Hardware

2027 MY Aftertreatment System

Third generation system improvements...

Improved catalyst formulation including Fe-zeolite layer at front of downstream SCR

Reduced N₂O formation with new system at below half EPA standard

Further improved low temperature durability by replacing CSF with DOC+DPF

DAAAC engine aging accelerated both chemical and thermal deterioration

Heavy-Duty Pathways Towards 2027 Emissions

International S13 (2024/2027)

Volvo D13 2024

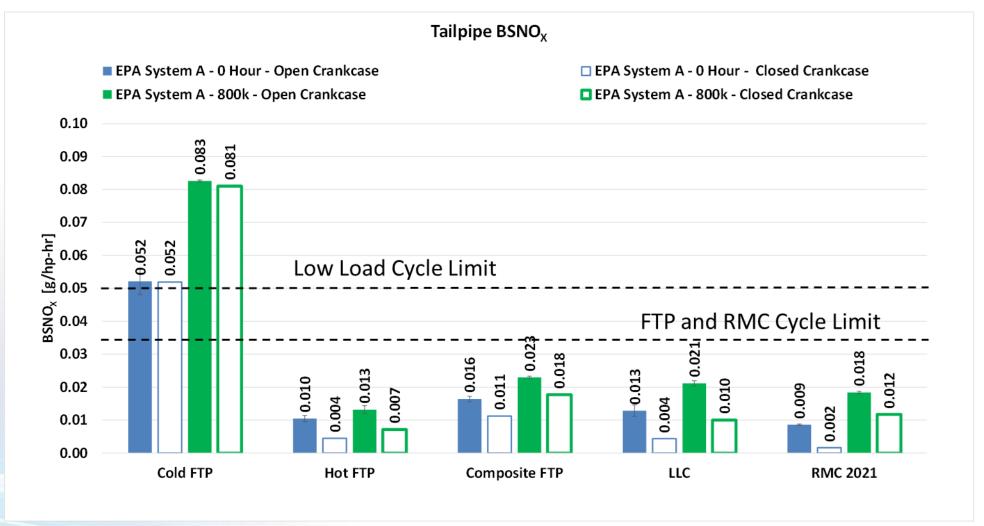
PACCAR MX13 2024 (CARB)

Cummins X15 2027

Uncooled EGR, (LO-SCR) Dual dosing, dual SCR, no DOC

DOC + DPF + 48V eHeater + SCR

48V eHeater + DOC + DPF + EH + longer SCR

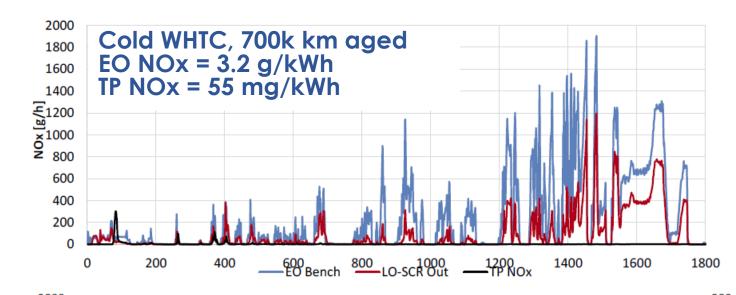


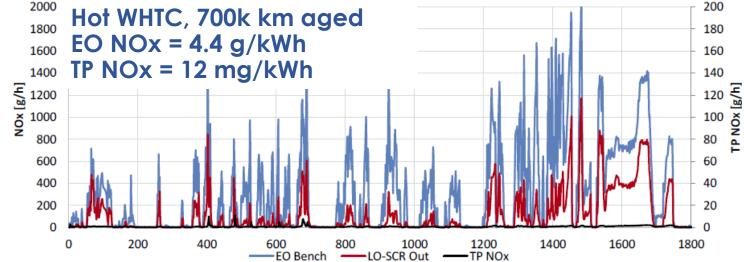
CCV, cooled EGR, 48V eHeater + DOC + DPF + 48V eHeater + SCR

Source: SAE WCX2025 Year in Review Panel; C. Sharp, SwRI

U.S. Cycle Performance after 1,200,000 km engine aging

- Sufficient margin below the limits after accelerated aging
- Closing the crankcase provides additional NOx reduction by up to 30%

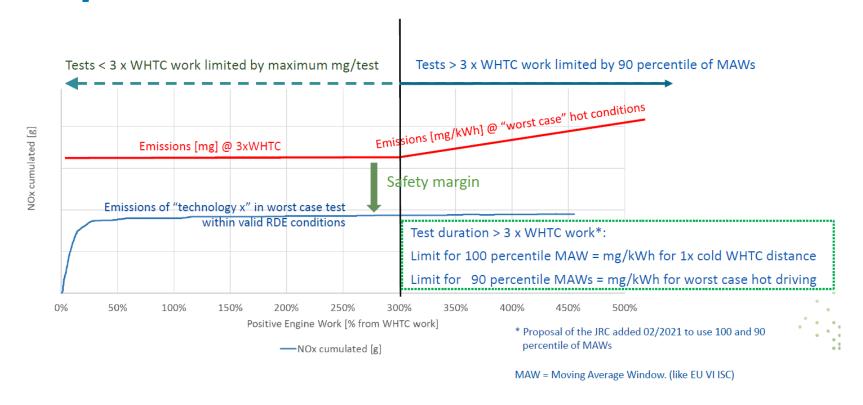



WHTC Testing shows Low-NOx Engine Provides Margin Below Euro 7

Euro VII WHSC/WHTC standard = 200 mg/kWh

Euro VII MAW excludes all emissions below 6% power

 Duty cycles such as drayage or delivery with stop and go (creep) operation will have high off-cycle emissions



Real-World Cycle Testing of Low NO_X Engine

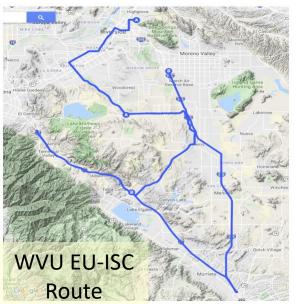
Proposed Euro VII - Details

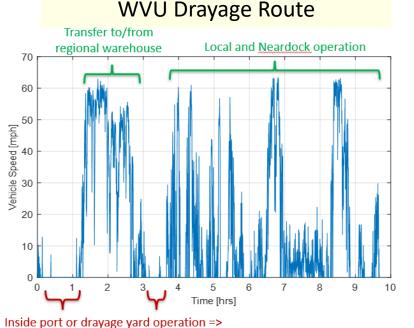
¹ Euro VII methodology proposed by AGVES April 2021, "CLOVE AGVES-HDV_Exhaust Pres 040821.pdf" and "AGVES-2021-04-27-HDV_Exhaust-v6b.pdf"

Budget [g/test] =

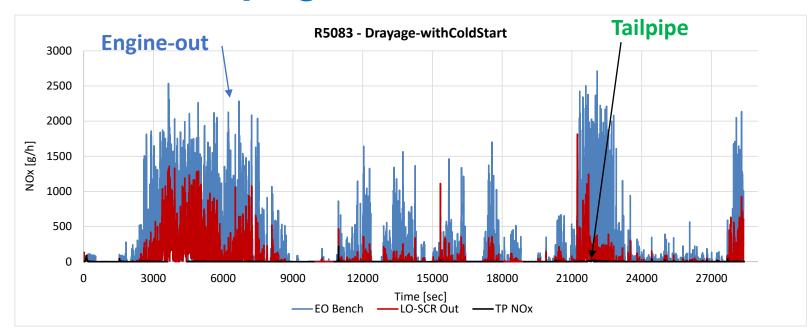
For trips > 3 x WHTC work:

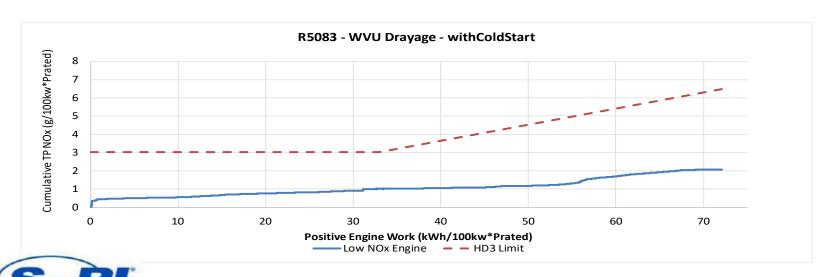
100 Percentile Limit for MAWs =


90 Percentile Limit for MAWs =



Real-World Duty Cycles


extended idle operation


Each of these cycles is a real working route that was driven with multiple Class 7 and Class 8 trucks

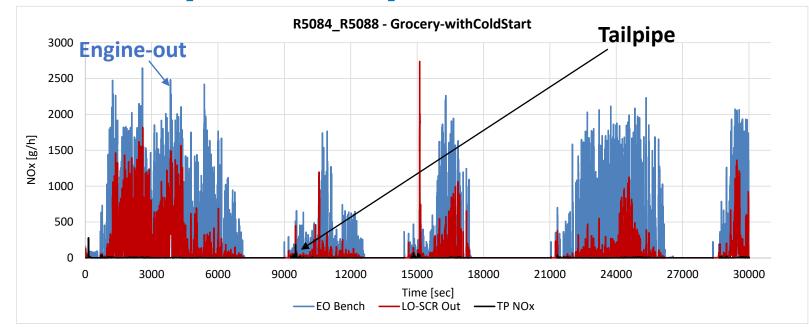
Cycles represented a wide variety of different kinds of vehicle operations

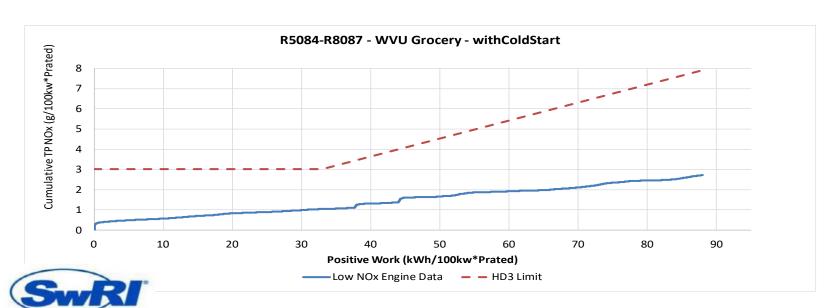
Recorded Vehicle Data was used to develop speed/load profiles that could be translated for Laboratory dyno testing

Port Drayage Route – About 10 hours of Operation

Cycle Characteristics

- 30-minute idle after cold-start
- Sustained low speed and low load
- Lowest load of the five cycles


Emission Results


- $50^{th} = 16 \text{ mg/kw-hr}$
- $90^{th} = 36 \text{ mg/kw-hr}$
- $100^{th} = 61 \text{ mg/kw-hr}$
- "Budget" = 31 mg/kw-hr

Grocery Delivery Route – 8.3 hours of Operation

Cycle Characteristics

- 30 to 60-min engine off
- Varying between low and mid loads
- Quick system recovery after warm starts

Emission Results

- $50^{th} = 30 \text{ mg/kw-hr}$
- $90^{th} = 56 \text{ mg/kw-hr}$
- $100^{th} = 60 \text{ mg/kw-hr}$
- "Budget" = 33 mg/kw-hr

Euro VII Analysis Result – Using Proposed WBW Methodology¹

U.S. 2027 controls aged for 700k km on engine (Open Crankcase results)

	Duty Cycle				Euro VII	
	CARB Southern	Drayage	EU-ISC	5m-ACES	Grocery	HD3 Limit Values
	BSNO _x Level, mg/kw-hr					
50 th percentile	25	16	26	24	30	n/a
90 th percentile	57	36	86	42	56	90
100 th percent	118	61	122	66	60	175
3xWHTC "budget"	60	31	68	33	33	100

 Results on all real-world duty cycles are below HD3 scenario proposed by AGVES for Euro-VII

¹ Euro VII methodology proposed by AGVES April 2021, "CLOVE AGVES-HDV_Exhaust Pres 040821.pdf" and "AGVES-2021-04-27-HDV_Exhaust-v6b.pdf"

Euro VII Analysis Result – Using Proposed WBW Methodology¹

U.S. 2027 controls aged for 700k km on engine (Closed Crankcase results)

	Duty Cycle				Euro VII	
	CARB Southern	Drayage	EU-ISC	5m-ACES	Grocery	HD3 Limit Values
	BSNO _x Level, mg/kw-hr					
50 th percentile	18	9	19	17	23	n/a
90 th percentile	50	29	79	35	49	90
100 th percent	111	54	115	59	53	175
3xWHTC "budget"	53	24	61	26	26	100

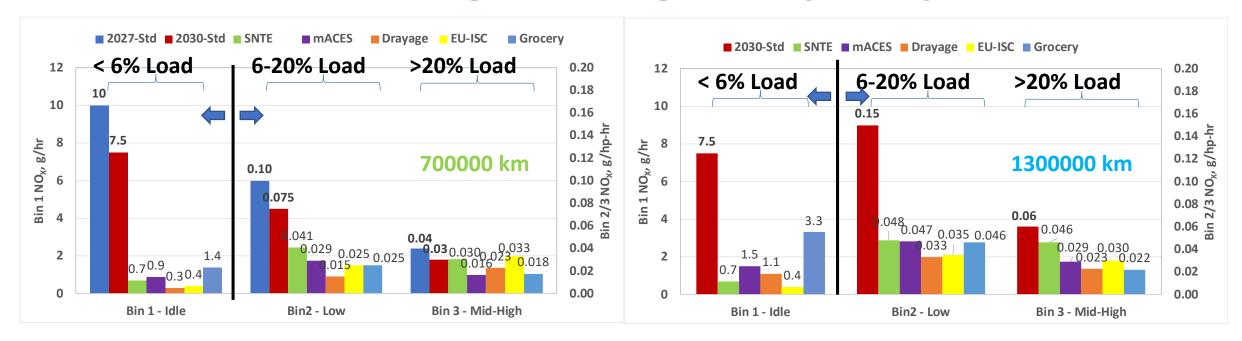
 Results on all real-world duty cycles are below HD3 scenario proposed by AGVES for Euro-VII

¹ Euro VII methodology proposed by AGVES April 2021, "CLOVE AGVES-HDV_Exhaust Pres 040821.pdf" and "AGVES-2021-04-27-HDV_Exhaust-v6b.pdf"

Summary and Conclusions

- U.S. 2027 ready Low NO_x demonstration hardware showed capability to meet original (more stringent) proposed Euro VII limits from the European Commission
 - Technology is being put into production now in U.S. (LO-SCR, e-heaters, etc.)
- Use of Low Load Cycle during calibration helped to guarantee low in-use emissions under all conditions without data exclusion
 - Field cycle testing met all EU-WBW limits based on calibration over U.S. cycles
 - Low Load emission control was as good or better than at average/high load
- Technology has been demonstrated to meet NOx limits substantially below Euro VII final limits.

Thank You!


rbrezny@meca.org

Supplemental

Field Duty Cycle Results (3Bin-MAW) Full Engine Aged

- Low Load emission problem is <u>no longer present</u> with Low NO_X technology controlled as well or better than high load
- Emission controls are durable still below thresholds at 1.3M km
- Note that these results are for OCV, with CCV Bin 2 and Bin 3 results are lower by ~10%

Euro VII Final Proposed Limits Emphasize In-Use Operation

Units	Euro VI	Euro 7 HD proposal			
mg/kWh (gas) #/kWh (PN)		Cold 100 th percentile	Hot 90 th percentile	Budget Trips < 3xWHTC	
NOx	460	350	90	150	
PM	10	12	8	10	
PN (#/kWh) Euro VI : PN ₂₃ Euro VII : PN ₁₀	6x10 ¹¹	5x10 ¹¹	2x10 ¹¹	3x10 ¹¹	
со	4000	3500	200	2700	
NMOG	160 _{тнс}	200	50	75	
NH ₃	10 ppm	65	65	70	
CH ₄	500	500	350	500	
N ₂ O	-	160	100	140	
нсно	-	30	30	-	

Test conditions	Normal	Extended Emissions / 2	
Ambient T (°C)	-7 – 35	- 10 to +45	
Max. Altitude (m)	< 1600	< 1,800	
Max. Speed (km/h)	≤ 145	≤ 160	
Payload	≥ 10%	< 10%	
Trip composition	As per usual use		
Min. mileage (km)	5,000 for < 16t 10,000 for > 16t	> 3,000	

Joshi, Mobility Notes – 12/2022