Presented at ECMA workshops at ARAI & ICAT PART 1

Vehicle Engine Efficiency and Emissions Review of Regulations & Technology Trends

Sept 11th – 12th, 2019

Dr. Ameya Joshi

joshia@corning.com

Summary – Light Duty

Fuel economy / CO₂ emissions

- CO₂ reduction targets across the world will require a 3 – 6% improvement in fuel economy per year
- Electrification mandates being proposed: China is now including hybrids in NEVs.

Criteria Pollutant Regulations

- Particulate emissions is a key health concern : PN regulations in EU/CN/IN
- US still the tightest for gas emission standards
- With tailpipe emissions approaching near-zero, focus now on real-world and in-use compliance
- Key elements of post Euro 6 regulations are being discussed

Technology trends / implications

- Various advanced ICE technologies still to be deployed. Pathways to 50% BTE outlined.
- Hybrids offer a 20 30% reduction in CO₂ today
- Lower comb. temperatures emphasize the role of advanced after-treatment systems

Technologies to reduce criteria pollutants

- Gasoline particulate filters (GPFs) widely being deployed in EU and China
- Reduction of cold start emissions is critical : TWC, HC-traps, SCR, DOCs are improving
- Euro 6 RDE compliant gasoline and Diesel vehicles certified and exceed the requirements
- Hybrids can have unique emission challenges which must be tackled

Regulations & Technologies to reduce Fuel Consumption

Light-duty regulations summary Fuel economy / GHG / Electrification

Electrification mandates (ZEV and PHEVs)

Mobility choices are "local" – and demand diverse technology approaches

ICEs are not going away anytime soon Mild hybrids expected to gain share. Pure EVs driven by mandates. Rapid improvements in battery costs and infrastructure happening

Advanced combustion technologies coupled with electrification are being adopted to reduce fuel consumption

There is still significant untapped potential of advanced ICE technologies

EPA, SAE 2018-01-0319 & High Eff. ICE Conference 2018

Technologies being explored to reduce exhaust T & enable λ = 1 operation without power loss

Fuel enrichment leads to high CO emissions

FEV, Aachen Univ. 30th Int. AVL Conf. "Engine & Environment", 2018

CORNING | Environmental Technologies

Water recovery from exhaust explored for water injection

Tenneco, SAE 2018-01-0369

Engine: 2.0L GDI, CR 9.5 : 1, LP-EGR Water : port injected Two locations for water separation : (1) Post EGR cooler (2) Post charge air cooler

MEM Active Cyclone

Lean homogenous combustion system is promising to deliver 10% reduction in CO₂ while meeting post-Euro 6 RDE emissions

2.2L Gen 3X GDCI (Gasoline Direct Injection Compression Ignition): 43% BTE + Tier3Bin30 demonstrated, & path to 50% BTE

SAE 2019-01-1154 & SAE High Eff ICE 2019 Delphi Technologies

Hybrids offer a pragmatic pathway for reducing CO₂ emissions

Global EV Outlook 2019 IEA, Electric Vehicles Initiative

- Hybrids offer ~ 20% lower CO₂ compared to ICE
- BEVs with 400 km range deliver only ~ 5 6% further reduction compared to hybrids
- BEVs with 200 km range deliver ~ 18% further reduction compared to hybrids → urban, short range driving is a good application for full electrification
- The best hybrids emit the *same* CO₂ as the best BEVs

Regulations - Criteria Pollutants

Global Light Duty Regulations

US Regs Drive Advanced Substrates, EU & CN Enforce Filters

			2017	2018	2019	2020	2021	2022	2022	2024	2025	2026	2027	2028	2029	2020	
			2017	2018	2019	2020	2021	2022	2023	2024	2025	2020	2027	2020	2023	2030	
		EPA		Tier 3 (phase in)										Tier 4 + 1 mg/mi?			
UJA	CALIFORNIA	CARB	LEV III Phase in								LEV III + PM 1 mg/mi			LEV	IV ?		
EU			WLTC	Start 3mg/mi Start 1mg/mi EU6d TEMP EU6d Final WLTC GDI PN 6e11 #/km CF NOx 2.1/PN 1.5 CF ≤1.5							EU7? IO2/NH3/HCI	7? H3/HCHO/N2O/others?					
JP			JP 09 (JC08)		New (WLTC - F	PNLT Phase 1-3)	Diesel RI	RDE (CF=2.0) Gasoline RDE								
Veree	#	Diesel	WLTC	EU6d	ТЕМР	EU6d Final							EU7?				
когеа	« • #	Gasoline	K-LEV III					(phase in	nase in)					LEV IV + 1 mg/mi?			
China	*)	Nation	Diesel Gasoline	China S	5 (~EU5)	CN6a			CN6b			CN 73					
Ciina		Beijing	BJ 6	CN6b w/d	RDE		RDE Monito	r	RDE CF TBD				erry.				
India	Nation		BS III	BS	5 IV	B	5 VI (~EU(5b)				BS V/II		/11.2			
IIIula		12 Cities	E	BS IV (~EU	4)		RDE Monito	r				55		(11.1			
Australia	*						EU5		EU6								
Thailand				EU4					EUS					EU6			
Brazil 📀			PROCONVE L6				РR (~ Т	PROCONVE L7PROCON(~ Tier 3 Bin 125)NMHC+NOx = 5040			ONVE L8	VE L8 30 + PM 3mg/mi					
Russia	EU5						EU6										
S. African na	tions		~ EU2						EU4 EI					EU	5?		

Emission test methodologies and tailpipe limits across major markets Diverse approaches, but emphasis on reducing in-use, urban emissions

	USA	EU	*: China	® India	Japan
Lab test cycle	FTP 75 US 06	WLTP	WLTP	NEDC (WLTP being considered)	WLTP
PEMS-based RDE	No formal "RDE" test	Yes	Yes Monitoring in 2020	Yes Start in 2023	Yes Diesel only
PM	3 mg/mi (~ 1.9 mg/km) CA states : 1 mg/mi	4.5 mg/km	6a : 4.5 mg/km 6b : 3 mg/km	4.5 mg/km	5 mg/km
PN	No	Yes, CF = 1.5 Diesel, GDI only	Yes, CF = 2.1 All engines	Yes, CF = ? Diesel, GDI only	No PN
NOx	Tightest gas std. NMHC+NOx = 30 mg/mi	Diesel : 80 mg/km Gasoline : 60 mg/km PEMS CF = 1.43	Fuel neutral 6a : 60 mg/km 6b : 35 mg/km PEMS CF = 2.1	Diesel : 80 mg/km Gasoline : 60 mg/km PEMS CF = ?	CF = 2.0
Cold start	Yes	Yes	No	Yes	Yes Correction by 1/1.6
Urban / Rural / Motorway speeds	N/A	< 60 km/h 60-90 km/h 90-145 km/h	< 60 km/h 60-90 km/h 90-145 km/h	< 40 km/h 40-60 km/h 60-80 km/h	< 40 km/h 40-60 km/h > 60 km/h

EU light-duty regulations Gasoline

Gasoline	CO mg/km	THC mg/km	NMHC mg/km	NOx mg/km	N ₂ O mg/km	PM mg/km	PN #/km	Engines	RDE	CF	Durability km
EU 6d Temp	1000	100	68	60	-	4.5	6.0x10 ¹¹	GDI	TA IUC	NOx = 2.1, PN = 1.5	160K
EU 6d Final										NOx = 1.5, PN = 1.5	
201	7	2018	:	2019	20	20	2021	20	22	2023	
Test Cycle	NED	l S ^{Sept.}	C Sept.							I	
PN RDE PN CF = 1.5*	N (1	lew TA EU 6d)	Al	ll vehicle (EU 6d)	es					CE = Confor	mity factor
NOx RDE NOx CF = 2.1 NOx CF = 1.43	N (EU	ew TA 6d TEMP)	All veh (EU 6d 1	icles remp)	New TA	All v	ehicles		TA: Type ap IUC: In-use	proval compliance

* PN CF = 1 + "error margin = 0.5" with error margin reflecting measurement uncertainty and subject to annual review

17

Other: CO₂ emissions also to be measured on WLTP, with correction to NEDC done via CO₂MPAS correlation tool CORNING | Environmental Technologies © 2019 Corning Incorporated

RDE test procedure progressively defined through 4 packages

4th Real World Driving (RDE) package implemented in Jan 2019

In service conformity (ISC) : Up to 100,000 km or 5 yrs.

Key changes through 4th RDE package

- Data analysis using moving average window method
 - Power binning (CLEAR) discontinued
- Margin error for NOx lowered from 0.5 to 0.43 (CF = 1.43) starting Jan 2020
- RDE evaluation factors defined

- Type VI (low T) optional
- Data will be made public

PEMS equipment and associated conformity factors are being reviewed every year in Europe

EU Commission, PTNSS 2019

China 6 : Tighter gas standards than Europe, PN limit applied to all vehicles (PFI as well)

Gasoline	CO mg/km	THC mg/km	NMHC mg/km	NOx mg/km	N ₂ O mg/km	PM mg/km	PN #/km	Engines	RDE	CF	Durability km
CN 6a	700	100	68	60	20	4.5	Before 2020/7:	All TT COP		2020/7: Monitor 2023/7:	160K
CN 6b	500	50	35	35	20	3.0	After 2020/7: 6.0x10 ¹¹	All	IUC ⁽¹⁾	2.1, to be adjusted ⁽²⁾ in 2022	200K

TT: type test; COP: conformity of production; IUC: in-use compliance

(1) OEMs need to run RDE at TT & IUC. Regulator can check RDE for COP & IUC. (2) Likely adjusted to a value that only system with GPF can pass. CF for PN & NOx only. Necessary to measure & record CO during RDE test.

Extended RDE boundary conditions broader than Europe: Temp -7° to 38°, Altitude 0 – 2400 m

CORNING | Environmental Technologies

Nationwide implementation of BS VI regulations, Final notification released on Sept. 16th, 2016

BS VI	4 Wheeler M Category	CO mg/km	THC mg/km	NMHC mg/km	NOx mg/km	THC + NOx mg/km	PM mg/km	PN #/km	RDE	
	Positive Ignition (PI)	1000	100	68	60	-	4.5	6.0x10 ¹¹	Test cycle under	
	Compression Ignition (CI)	500	-	-	80	170	4.5	6.0x10 ¹¹	development	

NEDC, V_{max} = 90 km/h (WLTC adoption not specified yet)

RDE boundary conditions are region specific Compared to EU: Higher altitudes in China, warmer in India

Finalized draft for real-world driving testing for BS-VI M1 & N1 category vehicles < 3500 kg

RDE Test for	type-approval and Conformity of Production	Boundary	Moderate	Extended*		
<u>Duration</u> : 90-1	20min, conduct on working days	Conditions	(Ref. EU)	(Ref. EU)		
Driving profile:	: Urban \rightarrow Rural \rightarrow Motorway, > 16 km each	Altitude	0 – 700	700 – 1300		
Cold start emis	ssions (gas and PN) : Included in evaluation	(m)	(0 – 700)	(700 – 1300)		
<u>Altitude</u> : Start	& end elevation < 100 m, Cum. Alt. < 1200 m/100 k	^m Temp. (°C)	10 - 40	8 - 10; 40 - 45		
<u>Break-in</u> : 3000) kms		(0 – 30)	(-7 – 0; 30 – 35)		
<u>Fuel</u> : Either ref	erence fuel or commercial fuel at choice of OEM	*Data in extende	d range divided by 1	6		
Route (share)	M1 Category	N1 category	Ref. EU			
Urban Phase 1 (24 - 44%)	V < 45 km/h $V_{avg} = 15 - 30$ km/h Stops : 6 - 30% of duration Each stop < 5 min	V < 40 km/h $V_{avg} = 15 - 30 \text{ k}$ Stops : 6 - 30% Each stop < 5 m	V < 60 km/h V_{avg} = 15 – 40 km/h Stops : 6 – 30% of duration Each stop < 5 min			
Rural Phase 2 (23 - 43%)	V = 45 – 65 km/h	V = 40 – 60 km	ı/h	V = 60-90km/h		
Motorway Phase 3 (23 - 43%)	$V \ge 65 \text{ km/h}$ V > 75km/h for > 5min V can be > 100 km/h for < 3% of duration	V ≥ 60 km/h V > 70km/h fo V _{max} = 80 km/h	r > 5min า	V > 90 km/h V > 100 km/h for > 5min V < 145km/h		

PEMS test data to be made available on publicly accessible website

Remote sensing data shows adverse impact of warmer temperatures on Diesel emissions

ICCT White Paper, 2019

SCR offers robust performance to meet the ambient temperature variations within RDE

Ambient temp. [°C]

Tightening of criteria pollutant limits & inclusion of previously unregulated species

- (1) Fuel neutral standards: Diesel = Gasoline
- (2) Further reduction of limits. Example: NOx = 40 mg/km (note: China6b limit is 35 mg/km)
- (3) Inclusion of PN < 23 nm (down to 10 nm)
- (4) Tightening of conformity factors (CF = 1.0 or "margin error = 0" for RDE/PEMS
- (5) Limits on previously unregulated species NO₂, N₂O, NH₃, HNCO, HCHO, PAHs
- (6) Replace NMHC with THC and account for CH_4 with CO_2 equivalence
- (7) Low temperature test (7 °C) for type approval (type VI test)
- (8) Limit on CO, limit on fuel enrichment

Continuous on-board monitoring : OBD \rightarrow OBM

CORNING | Environmental Technologies