INTELLIGENT LAB DEVELOPMENT SOLUTIONS

ECMA CONFERENCE DELHI 10TH & 11TH NOVEMBER 2022

HORIBA Intelligent Lab Intelligent Development Methodologies to Meet the Challenges of RDE and Future Emissions Targets for Net Zero

K Siva Kumar – Application Leader, HORIBA India Pvt Ltd.

Steve Whelan – Programme Director, Application Centre of Competence, HORIBA MIRA UK

Agenda

Introduction & Motivation

HORIBA Intelligent Lab & Torque MatchingTM

8

Conclusions

Introduction & Motivation **Operate Better + Develop Smarter**

- Software complexity is dominating
- Productively is not keeping pace with complexity

HORIBA Automotive © 2021 HORIBA, Ltd. All rid

Road tests need to be accurately replicated and emulated in the laboratory to allow efficient problem resolution, development and model sign-off.

Agenda Introduction & Motivation

HORIBA Intelligent Lab & Torque MatchingTM

8

Conclusions

Connecting the real-world and simulation to the laboratory Accelerate front-loading, development, validation, verification & sign-off

© 2021 HORIBA, Ltd. All rid

Automotive

Upgrade existing labs. Optimise development processes. Reduce development times by over 70%. Eliminate prototypes. Reduce expensive test trips

Example Use Cases

Design Explore more of the regulatory design space faster then real time.

Design Early validation before onroad testing

Quality Re-run road tests to validate changes or replicate failure modes

Development, Quality/Warranty Use cases, Regulatory Compliance Testing, Competitor Bench marking

Engine / E-Motor / Powertrain / Chassis Dynos

- Replicate the real-world
- Emulate changes
- Create Digital Twins
- Enable X-in-the-Loop

$$R(t) = \left(A + B \cdot v_x + C \cdot (v_{rel})^2\right) + m \cdot g \cdot \sin \theta$$

EU6 DI Diesel Example (Speed, Acc, Gear)

Sea Level (Road vs Lab : PEMS)	CO2 [kg]	CO [g]	NOx [g]	PN [#]	Work [MJ]
Road Test	12.23	5.88	49.28	1.56e12	49.96
Replication Test	12.55	4.83	47.79	1.2e12	49.09
Difference	2.67%	-17.8%	-3.01%	-23%	-1.7%
Variance	0.88%	8.4%	0.5%	100%	1.2%
Diff as % of EU6	-	2.4%	21%	0.7%	

□ High degree of replication:

- Mass emissions \checkmark
- Instantaneous \checkmark emissions
- ✓ RPM & Torque

HORIBA Automotive

- ✓ Pedal inputs
- ✓ Temperatures
- ✓ High repeatability

EU6 DI Diesel Example (Speed, Acc, Gear)

Sea Level (Road vs Lab : PEMS)	CO2 [kg]	CO [g]	NOx [g]	PN [#]	Work [MJ]	1000 - 500 - 2350
Road Test	12.23	5.88	49.28	1.56e12	49.96	200
Replication Test	12.55	4.83	47.79	1.2e12	49.09	E 150 -
Difference	2.67%	-17.8%	-3.01%	-23%	-1.7%	P_ 100 -
Variance	0.88%	8.4%	0.5%	100%	1.2%	0 0 0 50 - 0
Diff as % of EU6	-	2.4%	21%	0.7%		0 Eugin

High degree of replication:

- $\checkmark\,$ Mass emissions
- ✓ Instantaneous emissions
- ✓ RPM & Torque

HORIBA Automotive

- ✓ Pedal inputs
- ✓ Temperatures
- ✓ High repeatability

PHEV Example (Speed, Acc, Brk, Gear)

Sea Level (Road vs Lab PEMS)	:	CO2 [kg]		CO [g]	NOx [g]	PN [#]
Road Test		9.64		5.58	0.064	5.75e13
Replication Te	st	9.48		3.93	0.063	5.90e13
Difference		-1.66%	-2	29.7%	-1.73%	-2.67%
Variance		3.1%		10.0%	58%	2.3%
Diff as % of EU6		-	2	4.01%	0.02%	3.09%
Sea Level (Road vs Lab : PEMS)	Er	System hergy [kWł	ן	Ba Ei (-ve	attery nergy) [kWh]	Battery Energy (+ve) [kV
Sea Level (Road vs Lab : PEMS) Road Test	Er	System hergy [kWł 14.93	ר]	Ba Ei (-ve	attery hergy) [kWh] 2.78	Battery Energy (+ve) [kV 2.2
Sea Level (Road vs Lab : PEMS) Road Test Replication Test	E	System hergy [kWh 14.93 14.75	ר]	Ba Ei (-ve	attery hergy) [kWh] 2.78 2.75	Battery Energy (+ve) [kV 2.2 1.87
Sea Level (Road vs Lab : PEMS) Road Test Replication Test Difference	Er	System hergy [kWk 14.93 14.75 1.5%	י]	Ba Ei (-ve	attery hergy) [kWh] 2.78 2.75 .79%	Battery Energy (+ve) [kV 2.2 1.87 1.34%

© 2021 HORIBA, Ltd. All rights reserved

Automotive

PHEV Example (Speed, Acc, Brk, Gear)

Sea Level (Road vs Lab PEMS)	:	CO2 [kg]		CO [g]	NOx [g]	PN [#]
Road Test		9.64		5.58	0.064	5.75e13
Replication Te	st	9.48		3.93	0.063	5.90e13
Difference		-1.66%	-2	29.7%	-1.73%	-2.67%
Variance		3.1%		10.0%	58%	2.3%
Diff as % of EU6		-	4	4.01%	0.02%	3.09%
Sea Level (Road vs Lab : PEMS)	Er	System hergy [kWł	ן ו	Ba Ei (-ve	attery hergy) [kWh]	Battery Energy (+ve) [kV
Sea Level (Road vs Lab : PEMS) Road Test	Er	System hergy [kWł 14.93	າ]	Ba Ei (-ve	attery hergy) [kWh] 2.78	Battery Energy (+ve) [kV 2.2
Sea Level (Road vs Lab : PEMS)Road TestReplication Test	Er	System hergy [kWł 14.93 14.75	າ]	Ba Er (-ve	attery hergy) [kWh] 2.78 2.75	Battery Energy (+ve) [kV 2.2 1.87
Sea Level (Road vs Lab : PEMS)Road TestReplication TestDifference	Er	System hergy [kWk 14.93 14.75 1.5%	າ]	Ba Ei (-ve	attery hergy) [kWh] 2.78 2.75 .79%	Battery Energy (+ve) [kV 2.2 1.87 1.34%

© 2021 HORIBA, Ltd. All rights reserved

Automotive

Comparison of results (ICE)

HTM RLS Emulation has greater accuracy

- Result: HTM RLS approximately similar to the original replication test. Maintains higher replication performance than traditional RLS method
- **Robot Driver:** Existing robot speed controller and gradient adaption method is used to control vehicle accelerator
- Accelerator: Better pedal input replication compared to "RLS" method. Leads to closer emissions match.
- **Benefits of HTM RLS Gradient Extraction:**
 - Convert to Distance-Road Gradient Look-Up to enable different vehicles to be evaluated over same gradient
 - Import real gradient to virtual test route (e.g.IPG) CarMaker vehicle simulation) for Simulation and Vehicle-in-Loop testing

RLS v Emul	vs HTM RLS ation		
ed ele	Replicatio		
ehid	Traditional I		
≳ w	HTM RLS		
a	Replicatio		
Ped	Traditional F		
AF	HTM RLS		
ate	Replicatio		
2 R	Traditional F		
00	HTM RLS		

HTM (Replication)

~ 1.8%

HORIBA Torque Matching has superior accuracy to replicate the original road test and then produces a better Road Load Simulation for a more trustworthy development environment

© 2021 HORIBA, Ltd. All rights reserved

HTM RLS = HORIBA Torque Matching Derived RLS method

	• • • • • • • • • • • • • • • • • • • •	•••••	***********					
S	Linear Fit Model							
	Gradient	Intercept	R ²					
on	0.99	0.09	0.99					
RLS	0.99	0.18	0.99					
	0.99	0.21	0.99					
on	0.98	0.16	0.99					
RLS	0.85	0.67	0.87					
	< 0.91	0.70	0.94					
on	1.00	-0.03	0.95					
RLS	0.88	0.07	0.87					
	<_0.92	0.10	0.91					

CO2 Error Against Original Road Test HTM RLS Emulation **RLS + GPS Method** ~ -1.8% ~ -10.5%

Agenda

Introduction & Motivation

HORIBA Intelligent Lab & Torque MatchingTM

8

Conclusions

Torque Matching Method Gives Unrivalled Accuracy

Automated vehicle data transfer

Real-world drive is perfectly **Replicated**

Road Load is accurately derived to **Emulate** the real-world for vehicle attribute development

© 2021 HORIBA, Ltd. All rights reserved

Fully automated road-test replication with superior corelation

Smart lab-based development: Torque Matching + Simulation

Replication >> Simulation >> Emulation

- Create a digital twin of a sub-system or complete vehicle Simulate over the entire regulatory window to highlight 'hot spots' (areas of concern)
- Validate designs in simulation faster than real-time
- Check areas of concern on the real vehicle in the lab
- Prioritise areas for investigation and further development
- Validate simulation results are real to focus development effort Change variables to emulate a particular scenario of concern · Change 1 or more vehicle or environmental conditions to explore the impact of design changes on real hardware • Environment: Aggressivity / Elevation / Temperature • Vehicle/ DUT: Change components or calibrations

Torque Matching + Simulation provides a powerful development combination

© 2021 HORIBA, Ltd. All rights reserved

HORIBA

Automotive

Replication

• Reproduce the real-world test accurately on the chassis dyno Record the road load to use in simulation and emulation Validate the lab is able to accurately replicate the real-road test · Use the same vehicle coefficients in the lab and in simulation

Simulation

Emulation

Intelligent Lab

- New Road-to-Rig, HiL and Digital Twin methodologies have been developed and demonstrated
- Significant programme time (>70%) and cost (>€5M)savings can be realized by the adoption of Intelligent Lab
- We must "Develop Smarter" now and in the future to meet the challenges of RDE in the shortest timeframe

Real World

Virtual World

Thank y

감사합니다

Dziękuję

धन्य

Merci

ขอบคุณค

Gracias

Σας ευχαριστ

Teşekkürler

Danke

70U		
1 1	Cảm ơn	
ありがとうごさ	いました	
यवाद	Grazie	
谢谢 รับ	நன்றி	
Obi	gado	
ούμε	Děkuji	
Τ شک	ck ska ni ha	
Большое спа	ибо	