

ECMA's 14th International Conference, ECT-2023. Radisson blue Plaza Delhi Airport, New Delhi "Leaping to Cleaner Air for Tomorrow"

Topic: Euro 7 HD Legislation & Exhaust Aftertreatment for Heavy Duty Engines

Rajesh Maynal, Shantanu Tamhankar, Anant Srivastava, Sandesh Kamath Umicore Autocat India Private Limited, 412801 Shirwal

Andreas Geisselmann, Michael Bender, Dr. Stephan Eckhoff Umicore AG & Co.KG Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany

03 Nov., 2023

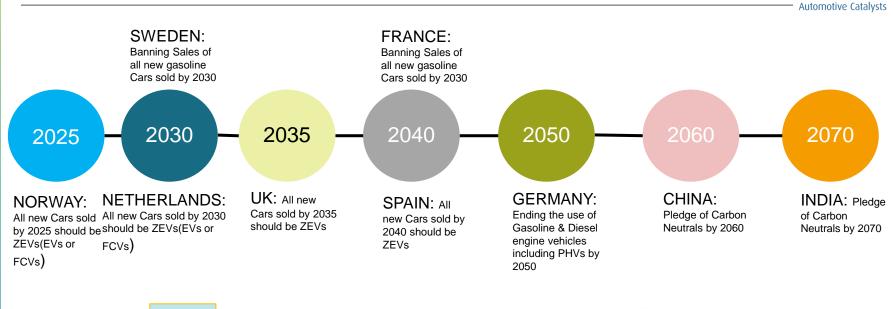
We reserve all rights in this document and in the information contained therein. © Copyright 2021 Umicore, Proprietary and confidential information

Umicore SENSITIVE document

Content

- Euro 7 HDD Legislation Overview
- Layout Evaluation
- Data Analysis
- Summary & Conclusion

Umicore's positioning within Mobility transformation



Umicore materials are essential in all clean mobility drive train concepts

Green: Umicore content

Country-Wise Outlook Of Electrification targets And Emission regulations

Umicore SENSITIVE document

0.12

0.10

0.08

0.06 July 1000

0.02

0.00

9

umi

Emission Limits EU7 HD

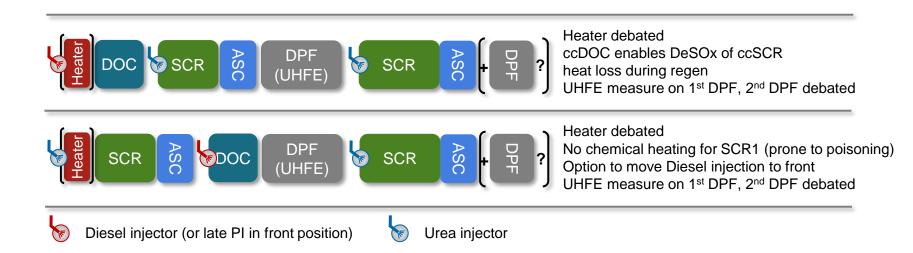
Pollutant	"Cold"	"Hot"	Budget			
Fonutant	emission s ¹	emission s ²	(W _{trip} <3 W _{WHTC})	Limits to be provided under a vast range of driving conditions		
NO _x [mg/kWh]	350	90	150			
PM [mg/kWh]	12	8	10			
PN₁₀ [#/kWh]	5x 10 ¹¹	2x 10 ¹¹	3x 10 ¹¹			
CO [mg/kWh]	3500	200	2700			
NMOG [mg/kWh]	200	50	75			
\mathbf{NH}_3 [mg/kWh]	65	65	70	Red numbers: assessed to be most challenging for HD Diesel Orange numbers: assessed to be highly demanding for HD Diesel		
CH ₄ [mg/kWh]	500	350	500			
N ₂ O [mg/kWh]	160	100	140			
HCHO [mg/kWh]	30	30				

¹⁾ refers to 100th percentile of moving windows (MW) of 1 WHTC for vehicles, or WHTC_{cold} for engines

²⁾ refers to 90th percentile of MW of 1 WHTC for vehicles or WHTC_{hot} for engines

6

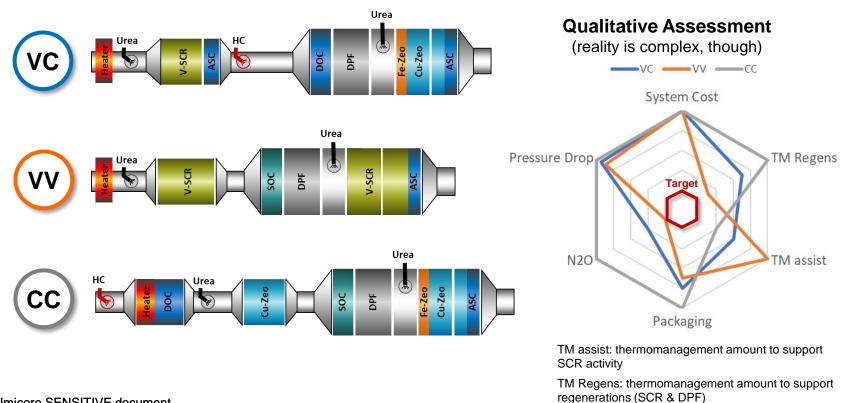
			Addition of the catalysis
d start NO _x	 Engine calibration: fast ramp-up, low NO_x @ cold phase External heating, e.g. electrical heater 2 Stage SCR (i.e. cc SCR) Low light-off SCR temperature 	 cc SCR with low N₂O selectivity e.g. V-SCR Inlet main SCR with low N₂O selectivity (e.g. Fe-Zeo) Engine calibration: reduce NO_x Moderate NO₂ levels Minimize NH₃ load on ASC 	N ₂ O
w load NO _x	 Engine calibration: avoid cooldown, low NO_x @ cold phase Insulation External heating, e.g. electrical Low light-off SCR temperature Efficient low T urea injection 	 Low porous filter substrates UHFE* coating Manage urea based PN → shift dosing to LO-SCR 2nd filter? 	PN
CO ₂	 Engine calibration: high NO_x, minimize heating ∆p optimized coatings Techs with low light-off 	 Robust catalyst technologies Exchangeable cc components? 	Dura-bility


Umicore SENSITIVE document

Col

Lo

System options



There is a vast range of options...

3 potential layouts

Umicore SENSITIVE document

V-SCR or Cu-SCR for the 2nd SCR unit?

Advantages for both system configurations

V-SCR – V-SCR

No DeSOx requirements

High robustness (esp. SCR)

Low N₂O (normal operation conditions)

Lower PGM content / cost

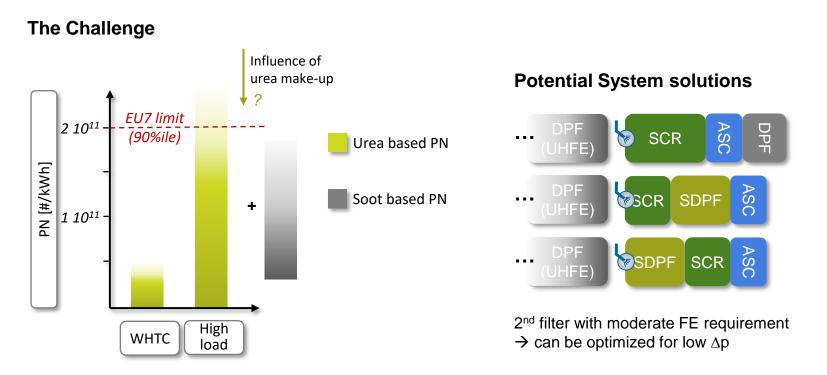
Lower pressure drop

Umicore SENSITIVE document

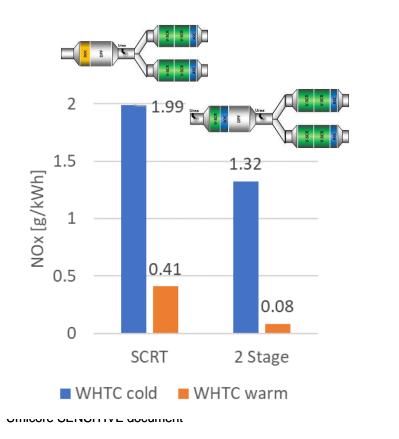
Less heating support during low load operation

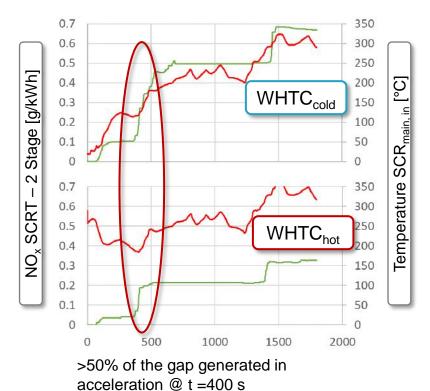
Lower SCR Volume demand

Better high temperature NO_x conversion



V-SCR – Cu-SCR


Solutions for Urea based PN



Advantage vs. SCRT system

Conclusions

Umicore's solutions to the latest aftertreatment challenges

materials for a better life