

Indian Real Driving Emissions

VIKAS SADAN Deputy General Manager- ICAT

10-Nov-2022

ABOUT ICAT

The International Centre for Automotive Technology (ICAT), Manesar is a centre under NATRIP (**N**ational **A**utomotive **T**esting and **R**&D **I**nfrastructure **P**roject), Govt. of India.

ICAT provides services for

- Test
- Validation
- Design
- Homologation
- Established : 2006
- ➢ Human resource : 535+
- Location : Manesar, Haryana (38 km from Delhi Airport)
- > Area : Centre I 8 Acres & Centre II 46.6 Acres

Real Driving Emissions (RDE) methodology has

been proven to be an excellent way to measure

emissions in real world conditions

Emissions should be kept below the emission levels not only in the laboratory but in normal conditions of use as well

WHY RDE OVER LAB EMISSION TEST REGIME

Up of the second second

In 2011, Joint research Centre (JRC) published a report, claiming discrepancies between lab testing and on road emissions. Mainly for NOx emissions from Diesel cars.

Consequence: Formation of working group on RDE under the supervision of EU

Commission.

RDE BACKGROUND [EU]

Both test procedures were evaluated by JRC (PEMS) and Vehicle manufactures (RC) in 2012 Result: PEMS testing was chosen as "golden" method RC were kept as backup

2011-2015:

- Kick-off: Working group on RDE
 - Complementary procedure for type approval and in-service conformity testing of LDVs
 - Covering a wide range of normal operating conditions; limiting defeat strategies
- Evaluation of candidate procedures by EU stakeholders (JRC report)
- Development of a PEMS testing protocol
- Pilot program to assess the feasibility of PN-PEMS

2016:

- Development of RDE Regulations 2016/427 and 2016/646 as first on-road test procedure worldwide
 - NOx Conformity factor 2.1 applicable from Sept. 2017/2019 (new types/all new vehicles)
 - NOx Conformity factor 1.5 applicable from Jan. 2020/2021(new types/all new vehicles)
 - Compliance during urban driving and the entire RDE trip

2017:

- RDE 3rd Package in Regulation 2017/1151
 - Testing of hybrid vehicles, coverage of cold-start and regeneration events, particle number emissions
 - PN Conformity factor 1.5 applicable from Sept. 2017/2018 (new types/all new vehicles)

2018:

- RDE 4th Package:
 - Provisions for in-service conformity
 - Reviewing RDE procedure & New NOx CF = 1.43 was proposed
 - Adapting provisions to ensure practicality and effective emissions testing
 - New Validation criteria that work with hybrids
 - New simple and transparent evaluation method
- Since then, JRC has carried out 2 more technical studies, published in year 2020 & 2021 highlighting improvements in PEMS Equipments and has proposed CF of 1.32 & 1.23 respectively. However, above CF yet not accepted in Europe

RDE DEVELOPMENT STAGES IN EUROPE

Scope

- •Diesel vehicles having a gross weight of 3.5t or less
- •Diesel powered passenger cars having a capacity of 9 or less people

Schedule of Introduction for RDE in Japan

- •New Type Approval Vehicle : October 2022
- •Continuous Production Vehicle : October 2024

- RDE method shall be able to check whether result of chassis-dynamometer test has effect on real driving correctly as well or not.
- The Japan's RDE method is based on EC's RDE method, but it is slightly modified by taking into consideration difference of real world driving conditions and adopted different phase of WLTC between Japan and Europe.
- Especially driving condition and speed threshold of Moving Average Window(MAW) and CF value under EC's RDE method are developed based on chassis-dynamometer test (WLTC) and real world driving conditions.
- Only measures NOx on Chassis Dyno test and RDE test and do not measure PN while Europe measure NOx and PN for Diesel Vehicle.

JAPAN RDE V/S EUROPEAN RDE

Based on difference of WLTP phases, Japan modified some of factors slightly as below.

	J-RDE				E-RDE	
	Routes	Speed [km/h]	Consist [%]	Routes	Speed [km/h]	Consist [%]
and	Lirban/Rural	ò60	40-65	Urban	∨<60	29-44
Consist	orban/itural	v≡00	40-00	Rural	60<\/<90	23-43
	Motorway	60 <v< td=""><td>35-55</td><td>Motorway</td><td>90<v< td=""><td>23-43</td></v<></td></v<>	35-55	Motorway	90 <v< td=""><td>23-43</td></v<>	23-43
Window speed characteristics	V<50:urban/rural speed 50≦V:motorway speed			V<45∶urban speed 45≦V<80:rural speed 80≦V<145:motorway speed		
CO ₂ characteristic curve reference points	P1 : Same as E-RDE P2 : Same as E-RDE P3 : —			P1:V _{p1} =18.8 (Average Speed of t P2:V _{p2} =56.6 (Average Speed of t P3:V _{p3} =91.9 (Average Speed o WLTP cycle)	382km/h he Low Speed phase o 664km/h he High Speed phase 997km/h f the Extra High Spe	of the WLTP cycle) of the WLTP cycle) ed phase of the

China RDE reference to EU RDE ,but make some changes according to own conditions.

Items		Requirements
Test procedure & PEMS requirements		Package 1,2
		Moderate: [0m, 700m]
Boundary Condition	Altitude	Extended: (700m, 1300m]
		Enhance extended: (1300m~2400m]
	Temperature	Moderate: [0°C, 30°C]
		Extended: [-7°C, 0°C) or (30°C, 35°C]
Data post-process	ICE, NOVC-HEV	Package 2 Moving Average Window Method
	OVC-HEV	Package 3
Conformity Factors	NOx, PN	2.1

* Extended factor: 1.6 Enhanced extended factor: 1.8

Korea RDE-LDV in

• Korea implemented EU RDE-LDV to diesel vehicle's emission regulation

with same technical requirement and same enforcement schedule

* under amendment for RDE package 4

EU RDE-LDV stage	contents	EU (enforcement)	Korea (enforcement)	
Package 1	methodologies measuring on-road NOx emissions and performance requirement of PEMS equipment	EU 2016/427, 646 (Sep. 2017)	CAA amend. in 2016 (Sep. 2017)	
Package 2	Package 2 on-road NOx emission limit		(300.2017)	
Package 3	methodologies measuring on-road PN emissions and emission limit including cold start provision	EU 2017/1151, 1154 (Sep. 2017)	CAA amend. in 2017 (Oct. 2017)	
Package 4	reviewing performance of PEMS equipment and revising on-road NOx emission limit with improved data analysis method	EU 2018/1832 (Jan. 2019)	Under amend.	

BS VI NOTIFICATION

Govt. Gazette Notification No G.S.R. 889 (E) dated 16th Sept 2016 notified implementation of BS VI with effect from April 1, 2020. BS VI included :

- RDE monitoring phase from April 1, 2020
- ➢ CF from 1 April 2023

RDE DEVELOPMENT IN INDIA

IRDE Tech Committee under Chairmanship of Director ICAT
 was constituted by MoRTH direction on 26th Dec 2016.

- Mandate: To define IRDE Test Procedure for Light Duty Vehicles.
- IRDE Report published in Nov. 2018.

Thereafter, committee undertook the work of deriving
"Conformity Factor" as per below plan.

- Same plan was presented in 60th SCOE Meeting held on 22-Aug-2019.
- The committee presented completion of "study" and proposal

for CF by end of Sep-2021.

IRDE DEVELOPMENT- METHODOLOGY

EU Model (3 rd Package) Adaptations	- India Specific Items Indian RDE
Key India Specific Adaptation	Methodology Adopted
 Ambient Temperature 	Data Survey.
Test Fuel option reference/commercial.	Indian Climate Data (15 Year Monthly Avg. Data with correction for Regional & Seasonal Extremes)
Speeds (Trip Share Distance)	
 Low Speed in Indian Cities / Highways. 	Data Collection by Experimentation.
 Maximum Speeds Lower in India 	Data Collection on Indian Roads in different Cities
 Typical Indian Vehicles (Small Engines / Low PMR) 	& Speed Distribution Analysis
Driving Dynamics (V*apos_95 & RPA)	V*Apos & RPA Scatter based on Data Collection on
 Typical Traffic Conditions in India Cities / Highways 	Indian Roads considering Usable Acceleration
 Typical Indian Vehicles (Small Engines / Low PMR) 	Potential.
Data Post Processing	Adaption using MIDC (2-Point Post Processing &
\circ Based on Type-1 Test (MIDC); Reference CO ₂ .	Validation for CO2 Correction Factors, Normality
 Adaptation of other Factors for Post Processing; Speed Bins, Normality, Completeness and multiplication factor. 	and Completeness)

IRDE test procedure was mainly developed based on EU 3rd Package with Adaptations for India

IRDE DEVELOPMENT : SNAPSHOT

- Over 60 vehicles Evaluated across various categories(M1, N1 & Low powered M1 & N1)
- Across Various Regions (North, West and South India) in different seasons
- Approx. 10,000km of Road Tests done.
- 15 IRDE Committee Meetings and Over 50 Expert Group Meetings & Telecoms
- Around 2 years of Work since commencement of activities from Jan 2017

Examples of Test Routes Pan India

Route 4New Dell

Torrent Louzaki Curgan Curga

IRDE TEST PROCEDURE

All Copy right reserved 18

IRDE TEST PROCEDURE

IRDE Trip Requirement

UPPER BOUNDARY

CONDITION CON 35 0.2 30 0.15 25 0.15 20 0.15 10 0.05 5 0 0.05 0.05 0.05 0.05 $(v \times a_{pos})_{k-}[95]$ K

LOWER BOUNDARY CONDITION

Relative Positive Acceleration (RPA)

1. If the test results are beyond upper/lower boundary then the test is VOID.

2. Dynamic boundary conditions exclude the driving that is too smooth or too aggressive

CHALLENGES FACED WORLDWIDE

- Selection of a Driving Route to minimise void tests and compliance to route requirement for trip share.
- Set-up for each vehicle is unique and hence adaptations to be panned carefully to ensure EFM fit for each engine size.
- Set-up to be made carefully to avoid damage to equipment due to exhaust temperatures.
- In India PEMS cannot be mounted outside the vehicle and hence needs to be accommodated inside the vehicle .
- PEMS is expensive equipment and subject to high risk of using on road.
- CO concentration increase inside the vehicle due to exhaust leakage and hence occupant at risk. Monitoring of CO levels required in the vehicle.
- Trip duration limited by battery capacity of the PEMS

CHALLENGES FACED WORLDWIDE

- Cycle mandates that all Trip share to be completed within set period of time, otherwise test might fail due to invalid result and be repeated.
- Trained drivers who have good knowledge of routes and driving style are required to maximize test validity are required.
- Confidentiality of vehicle prototypes to be maintained.
- Functioning of equipment in extreme hot conditions is a big challenge in India.
- High spread of results due to route selection, driver, traffic, results are not reproducible.
- Insurance of PEMS equipment is a big challenge due to its inherent usage.
- Customization of software to suit local regional requirements.

IRDE REGULATION

(VEHICLE CATEGORYWISE HIGHLIGHTS)

#	Items	M Category	N1 Category	M1 & N1 (Low Power) (PMR < 22kw/ Ton & Max. Designed Speed ≤ 70 kmph)	
		Environment Bo	oundary Conditions		
1	Temperature	Moderate: $10 \le T \le 40$, Extended:	40 < T ≤ 45 ; 8 ≤ T < 10		
2	Altitude	Moderate: $A \le 700 \text{ m}$, Extended:	700 < A ≤ 1300 m		
		Trip Rec	quirements		
1	Speed Ranges	Phase1: V < 45 km/h Phase2:45 \leq V <65 km/h Phase3: V \geq 65 km/h V>75km/h for min 5 min	Phase1: V < 40 km/h Phase2:40 \leq V <60km/h Phase3: V \geq 60 km/h V>70km/h for min 5 min	Phase1: V < 45 km/h Phase2: V \ge 45 km/h V \ge 55km/h for min 5 min	
2	Trip distance share	Phase 1: 34 Phase 2: 33 Phase 3: 33 (Same for	Phase 1: 34 % (±10%) Phase 2: 33 % (±10%) Phase 3: 33 % (±10%) (Same for M1 / N1)		
3	3For M1: Wherever legal max speed limit permits, the vehicle velocity can exceed 100 km/h for not mo than 3 % of the time duration of the Phase 3 driving, maximum up to 120km/hr. For N1: Restricted to 80km/h. For LP M1/N1: Restricted to 70 km/h				
4	Phase 1 Average Speed	15-30 km/h			
5	Total trip duration		90 – 120 min		

IRDE REGULATION

(VEHICLE CATEGORYWISE HIGHLIGHTS)

Sr. No	Points	M Category	N1 Category	M1 & N1 (Low Powered) (PMR < 22kw/ Ton & Max. Designed Speed ≤ 70 kmph)			
6	Minimum Distance	16km for each Phase (Phase (Same for M1/N1)	1, Phase 2, Phase3)	24 km for each Phase (Phase 1, Phase 2)			
7	Stop periods	 6 to 30% of Phase -1 dura May contain several stop period must no Vehicle should not be driv 	tion periods of 10 seconds or longer. pt exceed 5 Mins. en continuously below 20 km/h for mo	re than 20 minutes.			
	Trip Dynamics						
8	Number of Acceleration points	Minimum 150 for e Minimum	each for Phase1, Phase2 100 for Phase3	Minimum 150 for Phase 1 Minimum 100 for Phase 2			
9	Relative Positive Acceleration (RPA)	(V≤55.9 km/h) Y = -0.001825 X + 0.1755 (V>55.9 km/h) Y = -0.0011 X + 0.1350	Y = -0.0016x + 0.1406	$(V \le 54.76 \text{ km/h})$ Y = -0.0022X + 0.1271 (V > 54.76 km/h) Y = 0.0066			
10	V*Apos	(V≤56.9 km/h) Y = 0.0467X + 12.2490 (V>56.9 km/h) Y= 0.1665 X+ 5.4352	$(V \le 51.40 \text{ km/h})$ Y= -0.0614X + 6.9439 (V > 51.40 km/h) Y= 0.0045X + 9.8664	Y = 0.0142X + 4.6214			

IRDE TRIP REQUIREMENT

(GLOBAL COMPARISON)

#	Items	EU RDE	Japan RDE	Indian RDE
		Environment Boundary Cor	nditions	
1	Temperature	Moderate: 0 < T ≤ 30 Extended: -7 < T ≤ 0 ; 30 < T ≤ 35	Moderate: 0 < T ≤ 35 Extended:-2 < T ≤ 0 ; 35 < T ≤ 38	Moderate: 10 ≤ T ≤ 40, Extended:40 < T ≤ 45 ; 8 ≤ T < 10
2	Altitude	Moderate: A \leq 700 m Extended: 700 < A \leq 1300 m	Moderate: A ≤ 700 m Extended: 700 < A ≤ 1000 m	Moderate: A ≤ 700 m , Extended: 700 < A ≤ 1300 m
		Trip Requirements		
1	Speed Ranges	Phase 1: V < 60 km/h Phase 2: 60 \leq V < 90 km/h Phase 3: V \geq 90 km/h V>100 km/h for at-least 5 min	Phase 1: V < 40 km/h Phase 2: 40 \leq V < 60 km/h Phase 3: V \geq 60 km/h V>80 km/h for at-least 20% of Phase 3 duration	Phase1: V < 45 km/h Phase2:45 ≤ V <65 km/h Phase3: V ≥65 km/h V>75km/h for min 5 min
2	2 Trip distance share Phase 1: 34 % (+10%,not less than 29%) Phase 2: 33 % (±10%) Phase 3: 33 % (±10%)		Phase 1: 20-35 % Phase 2: 30 % (±10%) Phase 3: 45 % (±10%)	Phase 1: 34 % (±10%) Phase 2: 33 % (±10%) Phase 3: 33 % (±10%)
3	Maximum velocity	145 km/h (can exceed by15 km/h for not more than 3% of Phase 3 time)	100 km/h	100km/h (can exceed by 100 km/h for not more than 3% of Phase 3 time)
4	Phase 1 Average Speed	15-40 km/h	NA	15-30 km/h
5	Total trip duration	90 – 1	.20 min	90 – 120 min
6	Minimum Distance	16 km for each Phase	NA	16 km for each Phase

International Centre for Automotive Technology

All Copy right reserved 24

IRDE TRIP REQUIREMENT

(GLOBAL COMPARISON)

#	Points	EU RDE	Japan RDE	Indian RDE
7	Stop periods	 6 to 30% of Phase -1 duration May contain several stop periods of 10 seconds or longer. Single stop period must not exceed 5 minutes 	 7 to 36% of Phase -1 duration May contain several stop periods of 10 seconds or longer. Maximum single stop time is 300 seconds. Vehicle should not be driven continuously below 20 km/h for more than 20 minutes. 	 6 to 30% of Phase -1 duration May contain several stop periods of 10 seconds or longer. Single stop period must not exceed 5 Mins. Vehicle should not be driven continuously below 20 km/h for more than 20 minutes.
	-	Trip Dynamics		
8	Number of Accelerati on points	Minimum 150 (EU Package 3) Minimum 100 (EU Package 4)	Minimum 150 for each phase	Minimum 150 (Phase1, Phase2) Minimum 100 (Phase3)
9	RPA & V*Apos	$\frac{V^*apos 95}{y = 0.0467x + 12.2490}$ for Vavg y = 0.1665x + 5.4352 for Vavg > 1 $\frac{RPA}{y = -0.001825x + 0.1755}$ for Vavg > 1 y = -0.0011x + 0.1350 for Vavg > 1		

Conformity Factor (CF) Derivation

Limit (For RDE Test) = Limit (Type-1 Test) x Conformity Factor (CF)

<u>Example</u>

NOx BS-VI (Diesel Vehicle) Limit= 80 mg/km

If, CF = 1.5

Then, RDE Limit = 80 mg/km x 1.5 = 120 mg/km

Uncertainty in measurement of PEMS Equipment

Conformity Factor with improvement in PEMS equipment will keep on reducing.

Conformity Factors						
Fuel Type	Pollutants	EU CF (Defined on 20-Apr-2016)		EU CF (Defined on 17-Jun-2017)		EU CF (Defined 05-Nov-2018)
Implementation Date		Sep. 2017 (NT) Sep. 2019 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)	Sep. 2017 (NT) Sep. 2019 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)
Gasoline/	NOx	2.1	1.5	2.1	1.5	1.43
Vehicles	PN	TBD	TBD	1.5	1.5	1.5
Diesel	NOx	2.1	1.5	2.1	1.5	1.43
venicies	PN	TBD	TBD	1.5	1.5	1.5

REFERENCE REPORTS OF JRC, EUROPE

Timeline of JRC Report Matrix				
Document/Report Reference	Year Published	Final CF Value as per Document/Report		
JRC's Technical Report	Data for 2017 Published in 2018	NOx CF = 1.43 (Current CF in Europe)		
JRC's Technical Report	Data for 2018-19 Published in 2020	NOx CF = 1.32 (Proposed)		
JRC's Technical Report	Data for 2020 Published in 2021	NOx CF = 1.23 (Proposed) PN CF = 1.34 (Proposed)		

PHASES DEFINED BY IRDE SUB GROUPS FOR CF DERIVATION STUDY

After drafting test procedure for IRDE, different studies & experiments were carried out for different parameters for the derivation of the Uncertainty which are as follows:-

Phase-1	Phase-2	Phase-3	Phase-4
Distance Accuracy	EFM Drift	EFM Accuracy	Boundary Condition
Gas Accuracy	EFM Linearity	Analyzer Accuracy	Vibration
Analyzer Linearity		Zero Drift	
Time Alignment		Span Drift	

Note: All above studies has been completed under IRDE committee and data compiled & analysed

1. DISTANCE ACCURACY (PHASE-1)

Data Information

Data Taken:- Existing Validation Test Data

Data Provided By:-

- ICAT
- ARAI
- MSIL
- TATA MOTORS
- M & M

Uncertainty Derived: 0.99 %

Uncertainty (JRC-2017 Report): 4%

Uncertainty (JRC-2021Report): 4%

Uncertainty Proposed (IRDE): 4%

<u>Methodology</u>

- Distance from Chassis Dyno (Reference) & Vehicle OBD was compared.
- A correction factor was derived for correction of OBD distance.
- Corrected OBD distance was compared with GPS Speed.
- Percentage difference of OBD & GPS distance was considered as relative deviation.

• Finally, standard deviation of all data was considered as "Derived Uncertainty".

Distance Obtained During Correlation Test		Correction factor (Dyno to OBD factor) from dyno	OBD Distance From On Road IRDE Trials	Corrected OBD Distance From On Road IRDE	GPS Distance (In Km)	Absolute Deviation (In Km)	Relative Deviation (In %)
From CD	From Veh. OBD (PEMS)	Correlation test	(In Km)	Trials (In Km)			
x	Y	CF= X/Y	Z	A = CF x Z	В	A-B	(A-B) %

*Reference from AIS 137 Part-3 Chapter-20.

The total trip distance as calculated from the corrected GPS data shall deviate by no more than 4% from the reference. If the GPS data do not meet these requirements and no other reliable speed source is available, the test results shall be voided.

2. GAS ACCURACY (PHASE-1)

Data Information

Data Taken:- Directly from Gas Bottles

Uncertainty Derived: N/A

Uncertainty (JRC-2017 Report): 2%

Uncertainty (JRC-2021 Report): 2%

Uncertainty Proposed (IRDE): 2%

*Reference from AIS 137 Part-3 Chapter-20.

The concentration of the test gas shall be at a level to give a response of approximately 80% of full-scale deflection, for the operating range. The concentration shall be known, to an accuracy of $\pm 2\%$ in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder shall be pre- conditioned for 24 hours at a temperature between 293 K and 303 K (20 and 30 °C).

Methodology

As per Sub Group Meeting held on 12-Oct-2020, 2% agreed by all members.

Gas Accuracy:- 2% agreed as per directions of committee. But, sub group members may visit Gas manufacturer's facility before March 2020 to check the process followed by gas bottle manufacturer.

idiation 2	and the	~		_ · · · ·		R-TC766720000001321F	CERTI	FICATE OF ANALYS
Corr T P-OF-7.81 Issue Nu / Di ri T Horn Su / Di ri UARDE-2UI Horn Nu UARDE-2UI UARDE-2UI UARDE-2UI Horn Nu UARDE-2UI UARDE-2UI UARDE-2UI Horn Nu UARDE-2UI UARDE-2UI UARDE-2UI	Ifficate No. C-7867 N/21.04.202 092 09716 05	10. Res.No.Dr. 2005 C1 285 Contractions M Ordered Cor 2005	BR EXETURECATE: OF A General State State Bathood Communition Communition	NALANIS mer Namu Inox ns AS, mer Hellow Horn 4400 mm 44000 mm 4400 mm 44000 mm 4400 mm 4400 mm 4400 mm	All Products Pri La NLD C. Indunstat wei, Prataganga, 41 Bil Agrees Bil Agree	08 Production Dept. Anna. 10220.	e of Isaue (12.10.2020) Ihem No IAP-20-21/1092 101 No : 2000002781 of Order No : 119543 frail No : FLC/AL30007716 No. 000510 nder No : 508976F inder Capacity 34.0000 2 of Cylimder: ALJMINILIM	Customer Na Address *Pressure *Content *Stability Date Of Ana *Expiry Date Recom Lisson
ARBON MONOXIDE ARBON DOOXIDE ITROGEN		2855 (r) 4 2300 17,1000 Balance C	1m 55 - 25 Oas	2871 (10) 4,29 % 17.02 % Balance Gas		46-1% 46-1% 46-1%	e Type : G 5/8-1.11 ? of Valve : S.S. MICAL TESTING	income er sage
CRM/7RMN0 55 C1713410-26 08 C1713410-14 21 C1713410-07 02	08.2023 .08.2023 .07.2024 .08.2024	Cylinder No 0791385 0791191 0791160	Concorrect NITRIC OXIDE: PROPANE CARBON	Concentration 2307 FPM 3485 FPM 9.012 %	Standard VSL VSL	Accuracy 4/-0.22% +/-0.20%	ES Method : ISO 6143: 2001, Gas Analysis Comparison Method	
C1713410-30 01	08.2724	12791180	CARBON DRUNDE	14.995 %	VSL	+/-0.10%	Component Ordered Concentr	ation Certif
er Details							RIC OXIDE 2855 ppm	Can
NO2-NOX ANALYSER S CHROMATOGRAPH	JIIIORMO AGILEN	Make OTSI IER SCHNT T	Molet (2)C 421-10. 75900	Lent Calibrated 12.10.2020 12.10.2020	Prir C	NICH LD	PRANE 2855 ppm	
COR ANALYSER	PISCHER	R ROSEMOUNT	NGA2000 NGA2000	12.10.2020	N	IDIR IDIR	REON DIOXIDE 4.2300 %	
INS 16 order to obtain ecci	italio resulta e	of the analysis it is r	recommended to use go	n Mixture at pressure / 199	Sena las tran 3	KG/CM2	ROGEN D.1	

Inox Air Products Pvt Ltd.Production Dent A/5, M.I.D.C. Industrial Area. Rasayani, Patalganga, 410220. 140.00 kg/cm2

anded Unce

+/-1%

+/-1%

+/-1%

+/-1%

4.83 m3 24 Months

12.10.2020

12 10.2022

27 DEG C

3. ANALYZER LINEARITY (PHASE-1)

Data Information

Data Taken:- From Analyzer Linearity Certificates.

Data Provided By:-

- ICAT
- ARAI
- MSIL
- TATA MOTORS
- M & M

Uncertainty Derived: 0.13%

Uncertainty (JRC-2017 Report): 1%

Uncertainty (JRC-2021 Report): 1%

Uncertainty Proposed (IRDE): 1%

<u>Methodology</u>

•The value for Standard Error of estimate(SEE) was taken from Calibration certificates.

• In case of HORIBA, SEE was calculated.

•The standard deviation of all the SEE values was taken as uncertainty due to analyzer Linearity.

Ш			Current Data Set		Curre	nt Curve			Yi 498	Y' 498	(Yi-Y')	(Yi-Y') ² 0
	Point #	oint # Cut Gen. Conc. Z/S Adj. Counts		Measured Conc.	Error	Status		445.4	448.2	-2.8	7.84	
		[%]	[ppm]	,	[mag]	[%]			394.7	398.4	-3.6	12.96
\cap		11	1991		(FF)	1.4			295.4	298.8	-3,4	11.56
	1	100.0	475.0	128520	475.0	0.00(PT)	Pass		246.2	249	-2.8	7,84
	2	90.0	427 E	115772	427.9	0.01/ES)	Pace		196.4	199.2	-2.8	7.84
	-	50.0	427.0	115775	427.5	0.01(F3)	Fass		97.19	99.6	-2 41	5,8081
	3	80.0	380.0	102862	380.5	0.02(FS)	Pass		48.44	49.8	1.36	1.8496
		70.0	220 F	20012	222.0	0.04/50)	D		0	0	0	0
	4	70.0	332.5	99919	332.9	0.01(FS)	Pass				Σi=1, n (Yi-Y') ²	75.6377
	5	60.0	285.0	77008	285.2	0.01(FS)	Pass	-			n	11
	6	50.0	227 E	64019	227.2	0.01/ES)	Bass				n-2	9
	0	50.0	237.5	04010	237.3	-0.01(F3)	rass				Xmex	498
	7	40.0	190.0	51079	189.2	-0.03(FS)	Pass				1/x _{max}	0.0020080
		20.0	142 E	20100	141.4	0.04(ES)	Bass					-
IB	°	30.0	142.0	30109	141.4	-0.04(F3)	Fass				1 - 00 001 (- 0	9 1011999
	9	20.0	95.00	25324	93.81	-0.04(FS)	Pass			21	=1, n (n+t) / (n+2)	0.90914000
-	10	10.0	47.50	12667	46.92	-0.02(ES)	Dace			6007	51-1 - (VI VI) ² / (2 8089070
	10	10.0	47.50	12007	40.02	-0.02(FS)	-0.02(FS) Pass			SQRT 21=1, n (YI-Y')" / (n-2)		£.0903373
A	11	0.0	0.000	82	0.000	0.00(FS)	Pass			1/ x _{max} x 5	iQRT Σi=1, n (Yi-Y') ² / (n-2)	0.0058212
												-

	Test results									
۸	Description		Calculated	Limits						
А	a1 slope		1.0013	a1 = 1.001	3 (0.990 - 1.010	mandatory)				
\mathbf{V}	Xmin(a1-1)+a0		0.3707	Xmin(a1-1)+a0 = 0.3707 <=0.5% of analyzer range 12.5/2500						
v	SEE		0.0011	SEE = 0.0011 <= 1% of analyzer range 25/2500						
	r2 coefficient of det.		1.0000	R ² = 1.000	0 (>= 0.998 man	datory)				
-	Min. number points		10	10 points - min. 10 points <= 2% of ref. or <= 0.3 % FS 7.5/2500 FS						
	Per point. dev.		PASSED							
*Reference from AIS 137 Part-3 Chapter-			Measurement parameter/ instrument	xmin × (a1 – 1)+ a0	Slope a ₁	Standard error SEE	Coefficient of determination (r ²)			
20.			Gas analysers	≤0.5% max	0.99 - 1.01	≤1%	≥0.998			

4. TIME ALIGNMENT (PHASE-1)

Data Information

Data Taken:-Existing Validation Test Data

Data Provided By:-

- ICAT
- ARAI
- MSIL
- TATA MOTORS
- M & M

Uncertainty Derived: 2.55%

Uncertainty (JRC-2017 Report): 3%

Uncertainty(JRC-2021 Report): 3%

Uncertainty Proposed (IRDE): 3%

*Reference from JRC Report (2017)

The time alignment/dynamics uncertainty was kept 3%. Similar values were found from the limited number of real time data received in 2017 (all were laboratory tests, no tests from the road) (no figure shown).

<u>Methodology</u>

•The data of RDE tests and the validation tests were collected and the analysis was done.

•The variation for the RAW NOx value for the total trip was calculated and its standard

deviation was considered as the uncertainty due to Time Alignment.

Emission						Nox (MA alignmer	W) at time nt -3 to +3			NOx (MAW) at time alignment -3 to +3 (in %)			
		Total Mass	Unit	Mass / Distance	Unit	Ĭ	Phase-1	Total			P1	Total	
	CO	8.237	g	0.1192	g/km	-3.0		0 3635		-3.0		-2.36	
	CO2	7988	g	115.6	g/km	-0.0		0.0000		-20		_1 13	
	THC		g		g/km	-2.0		0.3681	~	-2.0		-1.15	
	CH4		g		g/km	-1.0		0 3719	1	-1.0		-0.11	
	NMHC		g		g/km	1.0		0.0710	-	0.0		0.00	
	NO (*1)	8.059	g	0.1166	g/km	0.0		0.3723		0.0		0.00	
	NO2 (*2)	17.67	g	0.2557	g/km	4.0		0.0000	1	10		-0 00	
	NOx	25.72	g	0.3723	g/km	1.0		0.3686		1.0		-0.33	
	NOxCorre		g		g/km	2.0		0.3638		2.0		-2.28	
	PM		g		g/km	0.0		0.0000		2.0		2.20	
	PN	1.11E10	#	1.61E8	#/km	3.0		0.3600		3.0		-3.30	

All data (±1sec) with Modulus (As recommended/followed by JRC)	1.98%
All data (±3 sec) with Modulus	2.55%

5. EFM DRIFT (PHASE-2)

Data Information Methodology Data Taken:- From EFM Calibration Percentage deviation of EFM span drift was calculated in case of Sensors PEMS. Certificates. •For calculating its Uncertainty the standard deviation of this data was taken. Data Provided By:-•AVL AVL HORIBA HORIBA AVL 💑 5.1.5 Nullpunktdriftprüfung / SENSORS 7.2.7. Span response drift: Span response is defined as the mean r 7.2.7. Span response onth: span response is defined as the mean response to a span for down during a time interval of at least 30 seconds. The span response drift can be verified based on the reported primary signals, e.g. pressure. The drift of the primary signal recorded at the flow at which the EFM was calibrated of the primary signal recorded at the flow at which the EFM was calibrated as the span of the term of the term. Anforderungen erfüllt / Requirements fullfilled: Zero Drift Check: - Reg. (EU) 2017/1151, Ann. IIIA, each measuring point below App. 2, § 7.2.6. ≤ ± 2% des kalibrierten Höchstdurchsatzes über 4 SPAN RESPONSE DRIFT Interval 1 Stunden / of calibrated max, flow over 4 hours Uncertainty Derived: 0.86 % 100 787 786 5.1.6 Justierausschlagdriftprüfung / Uncertainty (JRC-2017 Report): 2% Spandrift Check: Anforderung erfüllt / Requirements fullfilled - Reg. (EU) 2017/1151, ≤ ± 2% des kalibrierten Höchstdurchsatzes über 4 Uncertainty (JRC-2021 Report): 2% Ann. IIIA, App. 2, § 7.2.7. SPAN RESPONSE DRIFT Interval 2 Stunden / of calibrated max. flow over 4 hours 100 789 788 787 786 785 785 785 785 785 784 Uncertainty Proposed (IRDE): 2% SENSORS *Reference from AIS 137 Part-3 Chapter-20. Calculated mean values for the interval 1 and 2 $\overline{X_1} = 784.0528 \frac{kg}{k}$ The span response drift is defined as the mean response to a span flow during a time Calculated based on data of drift check provided by interval of at least 30 s. The span response drift can be verified based on the reported $\overline{X_2} = 782.8301^{-4}$ primary signals, e.g., pressure. The drift of the primary signals over a period of 4 h shall be less than ± 2 % of the maximum value of the primary signal recorded at the Copyright @ 2020 AVL LIST GMBH, all rights rese SENSORS flow at which the EFM was calibrated. AVL EFM EU 2016-427 2017.doc Date: 01/02/2017 Page 6/8

6. EFM LINEARITY (PHASE-2)

Data Information

Data Taken:- From EFM Calibration Certificates.

Data Provided By:-

•AVL •HORIBA

•SENSORS

Uncertainty Derived: 0.088 %

Uncertainty (JRC-2017 Report): 2%

Uncertainty (JRC-2021 Report): 2%

Uncertainty Proposed (IRDE):- 2%

<u>Methodology</u>

• The value for Standard Error of estimate(SEE) was taken from Calibration certificates.

• In case of AVL, SEE was calculated.

•The standard deviation of all the SEE values was taken as uncertainty due to EFM Linearity.

AVL EFM LINEARITY CERTIFICATE

1	Yi	Υ'	(Yi-Y')	(Yi-Y') ²		
1	641.70	640.40	1.3	1,69		
ſ	540.10	539.70	0.4	0,16		
Ī	346.50	346.80	+0,3	0,09		
Ī	227.82	227.64	0.18	0,0324		
Ī	171.82	171.50	0.32	0,1024		
Ī	143.34	143.16	0.18	0,0324		
Ī	114.88	114.89	-0.01	0,0001		
Ī	57.31	57.37	-0.06	0,0036		
Ī	21.29	21.34	-0.048	0.002304		
Ī	10.58	10.66	-0.081	0.006561		
Ī	0	0	0	0		
Ī			$\Sigma i=1$, n (Yi-Y') ²	2.119765		
Ī						
Ī			n	10		
			n-2	8		
			x _{max}	581.3		
			1/x _{max}	0.001720282		
			•			
		∑i	0.264970625			
		SQRT	0.514752975			
		1/ x _{max} x S	SQRT ∑i=1, n (Yi-Y') ² / (n-2)	0.00088552		

7. EFM ACCURACY (PHASE-3)

Data Information

Data Taken:- From Calibration Certificates.

Data Provided By:-

- ICAT
- AVL
- HORIBA
- SENSORS

Uncertainty Derived: 6.5%

Uncertainty (JRC-2017 Report): 9.6%

Uncertainty (JRC-2021 Report): 7.5%

Uncertainty Proposed (IRDE):- 9.6%

Methodology

- Based on the <u>Calibration Certificates</u> In this method, the EFM Linearity Certificates are taken and its % deviation is calculated with respect to its standard flow for each type of EFM at each Flow.
- 2. It was found that the deviation was large at lower flow rates and small at high flow rates. Thus, the worst value was considered as Uncertainty.

7. EFM ACCURACY (USING CAL CERTIFICATES)

International Centre for Automotive Technology

All Copy right reserved 37

8. ANALYZER ACCURACY (PHASE-3)

Data Information

Data Taken:- Through Special Benchmarking Experimentation

Data Provided By:-

- ICAT
- ARAI

Uncertainty Derived: 0.73%

Uncertainty (JRC-2017 Report): 2%

Uncertainty (JRC-2021 Report): 2%

Uncertainty Proposed (IRDE):- 2%

*Reference from Regulation AIS137 Part-3, Ch-20

4.2.2. Accuracy

The accuracy, defined as the deviation of the analyser reading from the reference value, shall not exceed 2 % of reading or 0.3 % of full scale, whichever is larger.

<u>Methodology</u>

- ICAT derived the methodology to calculate the uncertainty due to Analyzer Accuracy.
- NOx gas was passed through the PEMS and the Raw Analyzer simultaneously.
- Both readings were taken for Zero and Span (NOx) and the deviation was calculated for all readings.
- The Standard deviation of it was calculated as the Uncertainty.

		NOx Concentration (NOx = 466 ppm)													
	Pooding	PEMS (I	HORIBA)	Raw Aı (HOF	nalyser RIBA)	% Diff									
	Reading	Zero	Span	Zero	Span	76 Dill.									
	1	X1	Y1	X2	Y2	(Y1-Y2)/Y2*100									
nce	Ex=	0.0	466.6	0.0	467.4	-0.17%									

9. ZERO DRIFT (PHASE-3)

10. SPAN DRIFT (PHASE-3)

Data Information

Data Taken:- Through experimentation.

Data Provided By:-

- ICAT
- TATA

Uncertainty Derived: 0.54%

Uncertainty (JRC-2017 Report): 2%

Uncertainty (JRC-2021 Report): 2%

Uncertainty Proposed (IRDE): 2%

*Reference from Regulation AIS137 Part-3, Ch-20

Permissible Analyser Drift Over a PEMS Test									
Pollutant	Absolute Zero response drift	Absolute Span response drift (1)							
CO ₂	≤2000 ppm per test	≤2% of reading or ≤2000 ppm per test, whichever is larger							
СО	≤75 ppm per test	\leq 2% of reading or \leq 75 ppm, per test, whichever is larger							
NO _X	≤5 ppm per test	\leq 2% of reading or \leq 5 ppm per test, whichever is larger							

Methodology

- As similar to the Zero drift, the PEMS unit was installed on-board of the vehicles.
- The standard Pre and Post Test procedures were systematically followed.
- A Mixed Span Gas bottle (NOx) was placed on-board the vehicle.
- The PEMS was set to sample from the vehicle exhaust following the regulated procedures.
- \bullet At regular intervals of 10-15 minutes , zero checks were performed while the

vehicle was running through a predefined route.

• Therefore, span drift was calculated with the help of the readings taken.

11. BOUNDARY CONDITION (INDIA SPECIFIC) (PHASE-4)

<u>Methodology</u>

- To check the analyzer behaviour in stringent ambient conditions, the analyzer was operated and its Zero and Span drift was checked at different temperatures.
- For this, the equipment was installed in climatic chamber and set to measurement.
- The Pre and Post test was performed at normal room temperature.
- After Calibration, the temperature was increased by 5°C and the readings for Zero and Span (NOx) was taken.
- The readings taken at maximum temperature was at 45°C and minimum at 10°C.
- The deviation between the actual concentration and given value was calculated.

As result was within analyser accuracy specified in regulation.

International Centre for Automotive Technology

Data Information

ICAT

ARAI

Data Taken:- Through

Experimentation.

Data Provided By:-

Uncertainty Derived: 0.52%

Uncertainty (JRC-2017 Report): 0%

Uncertainty (JRC-2021 Report): 0%

Uncertainty Proposed (IRDE): 0%

All Copy right reserved 41

42

12. VIBRATION (INDIA SPECIFIC) (PHASE-4)

Data Information

Data Taken:- Through

Experimentation.

Data Provided By:-

ICAT

Uncertainty Derived: 0.30%

Uncertainty (JRC-2017 Report):-

Not Considered by JRC.

Uncertainty (JRC-2021 Report):-

Not Considered by JRC.

Uncertainty Proposed: 0%

As result was within analyser accuracy specified in regulation.

Methodology

• The effect of the vibration was analysed by checking the drift of Zero and Span gas while keeping the PEMS on a vibration simulating (MAST) bench.

• For this, the collection of data of vibration was

done through a Data Acquisition system.

•For this, accelerometer sensors were mounted on

the vehicle at different points like in boot space(1),

wheel centre(2), Suspension top(3), PEMS(4).

• Then, the vehicle was taken on the RDE

compliant route and was driven for the whole test.

12. VIBRATION (PHASE-4)

• After collecting the data the PEMS was mounted on the MAST Bench and the data collected on road was simulated on the bench.

- The readings for Zero and Span (NOx) were taken at an interval of 5 minutes.
- The Pre and Post test was conducted normally.
- •After taking the readings for Zero and Span, the worst value of it was taken and it was observed that it is well within the Analyzer's accuracy requirements.
- Since, it is having no effect on the analyzer, therefore, it can neglected.

Test setup on MAST Bench

FLOW CHART

Europe Uncertainty Flow Chart as per JRC 2017 Report													
Uncertainty Calculation Flow Chart (2017)													
Distance (S. [1/])	4		1111 a 1111										
Distance (64(2-1)					I								
EFM accuracy (8 _{gmou, acc} [%])	9.6	10:0	10.0		, ·		11.5		NOx emission uncertainity ($\mathcal{E}_{E,NO_{x}}$ [;	×.D			
EFM drift (E _{drift, gmou} [%])	2						Ŧ			3	Time Alignment/dynamics (ε, [%])		
EFM linearity (8 _{9mou,lin} [%])	2						15						
		NO	NO2				+			0	Boundary conditions (\mathcal{E}_{B} [%])		
Analyser accuracy (8 _{4,444,N0x} [)	2	3.6	3,6				14.5						
Gas accuracy (ε _{qar,N0x} [%])	2	51	51				ŧ						
Span drift (E _{zpan,NOx} [½])	2				Gasoline					Diesel			
Analyser linearity ($\mathcal{E}_{c,lin,NO_{ imes}}$ [½])	1			Limit (mg/km)	60.0	+		+			Limit (mg/km)		
						<u></u> 9,0	1	11.9					
						ŀ				- 15	Zero Drift (ð _{drift} [mg/km])		
										10	Worst Case Drift (ð _{drift,2} [mg/km])		
						-				2.5	CVS uncertainity (ð _{ovs} [mg/km])		
						Ļ		Ļ					
						31.	5	34.4	Margin(õ _{F,E,NO×} [mg/km])				
						52.4	4	43.0	Final Uncertainity [%]				
											Input		
											Calculated		
											Emission Limit		

FLOW CHART

Indian Uncertainty Flow Chart 2021_Proposed													
Uncertainty Calculation Flow Chart													
Distance (ɛ _d [%])	4		4										
EFM accuracy (ɛ _{qmew,acc} [%])	9.6	10.0	10.0			11.9	NOx emission uncertainity (ɛ _{ɛ,NOx} [%])						
EFM drift (ɛ _{drift,qmew} [%])	2					+		3	Time Alignment/dynamics (& _t [%])				
EFM linearity (8 _{qmew,lin} [%])	2					15							
		NO	NO2			+		0	Boundary conditions (8 ₈ [%])				
Analyser accuracy ($\epsilon_{c,acc,NOx}$ [%])	2	3.6	3.6			14.9							
Gas accuracy (8 _{gas,NOx} [%])	2	5.1	5.1			+	<	0.00	Vibration				
Span drift (ɛ _{span,NOx} [%])	2				Gasoline			Diesel					
Analyser linearity (ɛ _{c,lin,NOx} [%])	1			Limit (mg/km)	60	• •		80	Limit (mg/km)				
						9.0 11.9							
								15	Zero Drift (δ _{drift} [mg/km])				
								10	Worst Case Drift (δ _{drift,2} [mg/km])				
								2.5	CVS uncertainity (δ _{cvs} [mg/km])				
						↓ ↓							
					3	1.5 34.4	Margin(δ _{F,E,NOx} [mg/km])						
						52 43	Final Uncertainity [%]						
Phase-1				Ir	ndia CF I	Propose	d : 1.43						
Phase-2									Input				
Phase-3									Calculated				
Phase-4									Emission Limit				
To be taken from Lab													

Monitoring Phase "CF Data" analysis for Industry (ICAT & ARAI)

(Less than 3.5 Ton)

Monitoring Phase Data – Industry (ICAT & ARAI)

Monitoring Phase Data – Industry (ICAT & ARAI)

Fuel Type	Pollutant s	utant EU CF EU CF s (Defined on 20-Apr-2016) (Defined on 17-Jur				EU CF (Defined 05-Nov- 2018)	Proposal for INDIA
Implementation Date		Sep. 2017 (NT) Sep. 2019 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)	Sep. 2017 (NT) Sep. 2019 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)	Jan. 2020 (NT) Jan. 2021 (AT)	Apr. 2023
Gasoline/	NOx	2.1	1.5	2.1	1.5	1.43	*1.43
CNG Vehicles	PN	TBD	TBD	1.5	1.5	1.5	1.5
Diesel	NOx	2.1	1.5	2.1	1.5	1.43	1.43
Vehicles	PN	TBD	TBD	1.5	1.5	1.5	1.5

* Applicable for Gasoline Direct Injection (GDI) Only

> In its June 2018 session, WP.29 decided to set up an informal group under GRPE to prepare, within the coming years, a GTR on Real Driving Emissions procedure.

- ➤ The goal of the informal group was to prepare and propose to GRPE, for its June 2020 session a draft text of an RDE GTR, including suggestions for the organization of the future work.
- > The mandate for the informal group was limited, in a first step, to June 2020, but may need to be extended to work on additional items.
- > 15 informal group meetings held where contracting parties shared country specific data for evolving Global RDE and the work is under progress.
- ➤ Lately, group decided to start work on Phase-2 and current draft text was tittle as Phase-1, which included India specific points.

- > Addition of M1/N1 Low Powered category, which is specific to India.
- >Trip requirements were proposed as per Indian RDE.
- > Trip Dynamics were proposed as per Indian RDE.
- Evaluation of windows proposed as per WLTC 3-Phase (India).
- > Reference CO_2 Mass values were kept open for future validation on WLTP.
- For final RDE Emission result calculation, India proposed to use calculation as per RDE Package-4, as & when India will shift to WLTP from MIDC.

> In 61^{st} SCOE Meeting, different sub committee's were formulated to start WLTP

activity in India.

- > WLTP RDE Sub committee was assigned to ICAT which has started its work.
- Committee has published final draft IRDE WLTP Document on 19-Jul-2022 after

several deliberations.

> The same would be incorporated in AIS-175 document.

- IRDE Committee had laid down test procedure in year 2018 : Phase 1
- Based on experimentation & existing data IRDE Committee has worked out the CF for vehicle less than 3.5 tons : Phase 2
- > Analysis of Monitoring Phase data of IRDE was done by the IRDE committee
- IRDE Committee forwarded the recommendation to MoRTH and final notification on the same is awaited.
- ≻Global RDE Phase-1 concluded in draft stage with India Specific inputs. Phase-2 work is
- expected to commence soon by GRPE.
- > WLTP IRDE Final Draft released on Jul' 2022.

International Centre for Automotive Technology

All Copy right reserved 54