

Need for Robust design of DPF for Non-Road Engines

■Leanings from other markets globally

On-road vehicle

(Function; Transfer of human/products)

Road

 Vehicle runs based on traffic condition, area.

Requirement for DPF: High filtration performance

2: Higher Oil consumption

-> Ash* amount is higher than on-road vehicle for the same in use hours

Requirement for DPF: Low back pressure with Ash (or long ash cleaning interval)

Depends on customer education and decision including maintenance / type of oil and fuel etc

Requirement for DPF: High robustness** considered with worst condition

Example) Customer use condition variation

- ✓ In case tractor works in small size farm, the loading condition is transient (not stable condition), it implies passive RG is less than expected and more Active RG is needed.
- ✓ Higher robustness substrate :R-SiC can help in these deviations of working parameters.

Example)End user character variation for each vehicle type Confidential 4/12

Table End user character for each vehicle type

Vehicle type	Passenger car(OR), AGRV(NR)	Medium/Heavy duty(OR), CEV(NR)	
Main End User	Individual person* / small group* / Company	Big group / Company	
Care (Maintenance)	*Depend on end user judgement -> Care/maintenance is less (Continue to use without care)	Care / regular maintenance is conducted depends on company	
DPF robustness	Requirement is much more. (Need robustness for avoiding customer complaints due to failure, and in order to reduce after care support by OEM)	Requirement is needed. (Need robustness for avoiding customer complaints due to failure, and in order to reduce after care support by OEM)	

■ Robust design for actual use condition

✓ Parts are used in the market for a long time, hence the DPF has to perform from market release to end of life with safety margin for lots deviation.

Example)Ash deposition effect for soot mass limit

- ✓ R-SiC has higher soot mass limit than Cordierite.
- ✓ Advantage soot mass limit can be used for reduced effective area by ash deposition.

Example

DPF size: D6.77x6"L (Volume: 3.5L) In case require SML is 3g/L(10.5g/F).

Table SML comparison

Material	R-SiC	Cord.	
SML/Litter	6g/L	(3g/L)	
Fresh : No ash	(Effective volume) 3.5L	18g/F :+100%*	10.5g/F :+0%*
Deposit ash filled 50% of filter after durability	1.75L	10.5g/F :+0%*	5.3g/F :-50%* ->1.5g/L

^{*}Advantage percentage for target SML

Blue: Clear Red: Not clear for Target SML

Fig. Maximum temperature during Drop-to-idle test with different soot load

Example)Considering back pressure on actual use

- ✓ Back pressure with soot has some deviation in actual use.
- ✓ R-SiC has higher repeatability for back pressure hysteresis

Fig. Pressure loss during soot accumulation and regeneration (300/7)

R-SiC

dP deviation in same soot

1st ~4th : 7.2~8.0kPa (11.1%)

2nd ~4^{th*}: 7.2~7.6kPa (5.5%)

Fig. Pressure loss during soot accumulation and regeneration (Cordierite)

Cordierite

dP deviation in same soot

1st ~4th : 7.3~9.8kPa (34.2%)

2nd ~4^{th*}: 7.3~8.7kPa (19.1%)

Example)dP hysteresis effect for soot mass limit

✓ In case consider with dP deviation as hysteresis, there is possibility that actual soot amount is much higher than OBD/ECU value. R-SiC has better dP hysteresis and high robustness, therefore it help for control with some buffer

Fig. Maximum temperature during Drop-to-idle test with different soot load

4% 3%

Example) Chemical durability test

- Ash is deposited in the filter through soot regeneration, and there is possibility that ash reacts with the substrate and leads to defect.
- SiC has high chemical resistance and no defect.

Fe₂O₃

India market Ash

Cordierite

Test cell

:20mmx20mmx3cel

:1200degC-3hrs keep

R-SiC

Heat treatment

No reaction

No reaction

No reaction

CuO

No reaction

Fig. Chemical reaction test results

- -Generally ,one engine is used with different DPFs and each calibration for each vehicle type. Especially one small engine has many iterations leading to higher cost.
- -> SiC DPF has high robustness(SML) and can cover these different type of usage with single size.

Engine	Calibration	Other	DPF	
			Cord	SiC
	1:Torque peak@ 1500 rpm		Shape A	Shape A (Common)
A 30~40kwh	2:Torque peak@ 2200 rpm			
A_30°40kWII	3:Torque peak@ 2800 rpm		Shape B	
	4:Torque peak@ 2200 rpm	With Turbo	Shape C	
B_50kwh	Torque peak@ 2000 rpm	With Turbo	Shape D	

✓ IBIDEN can supply robustness substrate for meeting customer requirement , and can support development by some equipment including test cell(Engine bench)

Item			Item	Contents	Example of contents	
Technical Support		Physical property		Fundamental properties	Bending strength, compressive strength, porosity, pore diameter, pore size distribution	
	Technical support	Segment		Segment evaluation	Cold-flow dP, DTI (SML), PM size distribution	
		DPF	Test cell	Test with engines	PN filtration, dP, Regen. Efficiency, Uncontrolled regen., PN/PM measurement	
			Vibration	Reliability test against cycles of vibration		
			Heat cycle	Reliability test against repeated thermal stress		
			Hot shake	Reliability test of vibration and thermal stress		
			Isostatic statics	Durability against canning		
			Ash accumulation	Ash loaded DPF evaluation by accumulating artificial ash		
	upport	Filter analysis		Filter analysis	Size, weight, ash amount, crack detection and route cause, thermal record, internal observation	
	S	dP simulation		[Input] DPF size, pore structure, cell structure, gas velocity, temperature, soot density, ash density [Output]dP at input condition		
	Analysis	CAE	Gas flow + heat	Gas flow and thermal distribution calculation of after treatment system		
			Regeneration	Thermal behavior calculation during soot load and regeneration based on actual test		
	₹		Filtration	Soot size distribution, DPF pore structure, soot filtration		

IBIDEN Co., Ltd.