

Innovative Aftertreatment Systems for Heavy Duty Applications to fulfill future demands

ECT 2023 Conference 3rd November 2023 Dr. Georg Hüthwohl (MD Albonair GmbH)

Future Demands for EATS 1 2 CatVap: an effective Exhaust Heating System 3 Heated Nozzle: close the gap

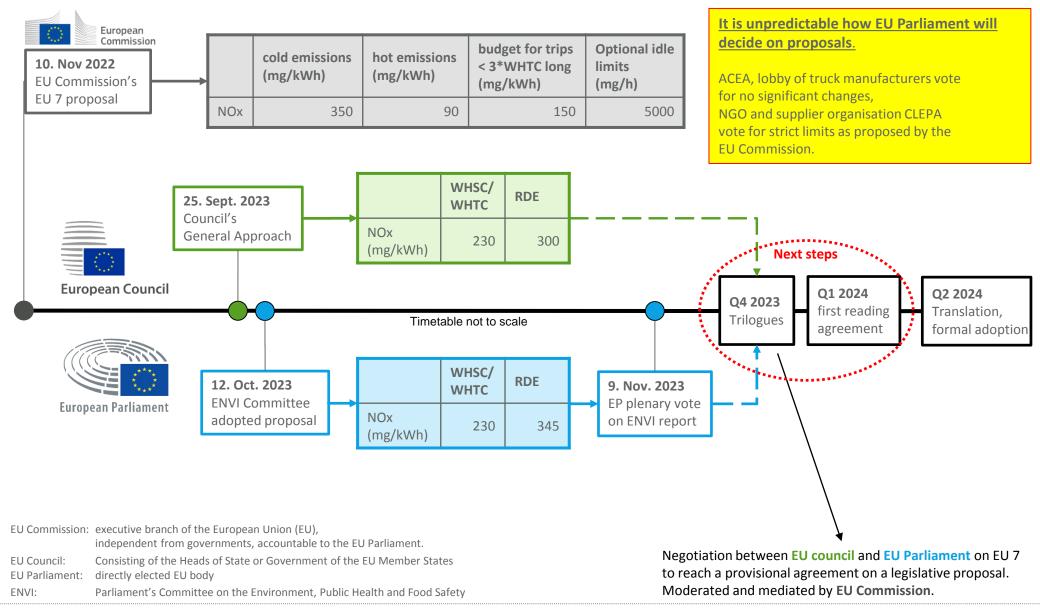
Robust AdBlue Dosing Systems: reduce complexity and Cost

Summary

European Commission: EU 7 proposal - overview

			he Euro 7 re					
	Limits for emissions from brakes		Rules on microplastic pollution from		Vehicles need to comply with emissions rules			
	More effective		tyres Digital monitoring		for longer period Better market surveillance tests	Lower emissions of the fleet by 2035 compared to EU 6/VI		
्रम	emissions tests		of compliance			Reduction of	trucks/busses	cars/vans
-	For internal combustion engine vehicles						> 56 %	> 35 %
	Fuel- and technology- neutral emission limits	A	Regulating additional pollutants	题	On-road tests with broader range of driving conditions	tailpipe particles	> 39 %	>13 %
						brakes particles	> 27 %	

For electric and plugin hybrid vehicles



Battery durability requirements

- Technology and fuel neutral
- > Commission's proposal in discussion: European Parliament and European Council
- > Implementation proposal: 2025 for cars/vans, 2027 for trucks/busses
- > due to personnel restructuring: several changes seem possible, even to omit EU 7 and extend EU VI instead

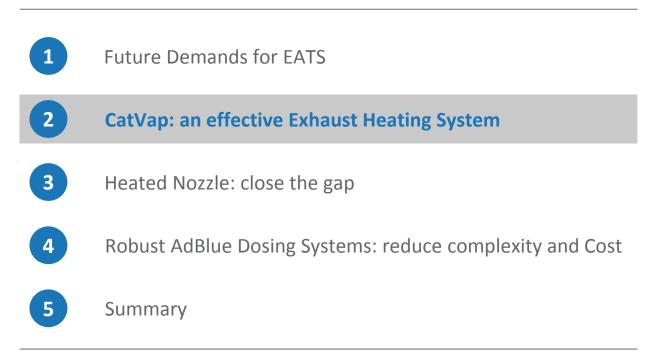
EU 7 Legislation Process – Nox Emission Proposals

Basic Technology to meet EURO 7

 add. close-coupled catalyst and urea injection higher NOx conversion rate and faster light-off under cold- start/low-load conditions Dual Dosing increases system complexity Packaging is an issue 	 vanadium-based catalysts several OEMs are considering using vanadium-based catalysts (EU VI: Cu-zeolite) simpler chemistry: cheaper and minimizes N₂O formation suitable, low-cost alternative to copper catalysts for the close-coupled SCR stage, where the exhaust temperature is easier to control than in a post-filter location. Better durability if high temperatures are avoided 			
 external exhaust heating accelerates SCR warm up to the light-off temperature reduces the need for larger catalyst volumes, increased catalyst loading, or advanced urea injection strategies Electrically Heating may force 48 V systems Burner Systems require an Air Blower which makes the system complex Catalytic Heating gives high power supply 	 ultra-high filtration DPFs Enhanced design is required to increase the filtration efficiency especially for an unloaded DPF while ensuring only a small drop in pressure across the filter, to avoid a CO₂ penalty 			

Source: P.-L. Ragon, Estimated cost of diesel emissions control technology to meet future Euro 7 standards for heavy-duty vehicles, ICCT, 2023

Cost of technology to meet EURO 7



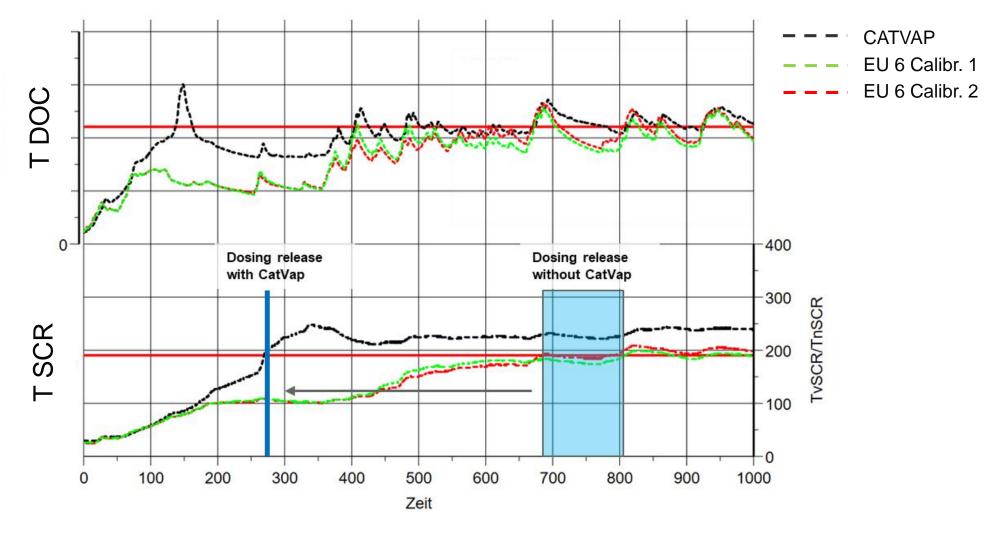
Source:

P.-L. Ragon, Estimated cost of diesel emissions control technology to meet future Euro 7 standards for heavy-duty vehicles, ICCT, 2023

STRICTLY CONFIDENTIAL | 11/8/2023 | 5 |

CatVap®

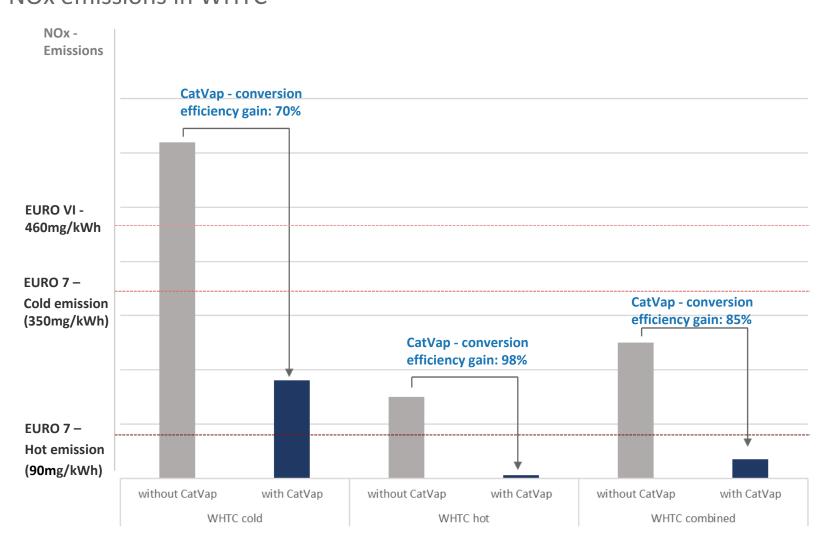
flexible heating and heat retention system



SYSTEM CHARACTERISTICS

- Efficient and flexible aftertreatment thermo-management
- Powered with fuel only, after short electrical system start
- Intermittent/continuous heater performance up to 20 kW
- Variable heating output with a large spread up to 100 kW using the DOC for conversion of cracked fuel (process gas)
- Continuous DOC / SCR temperature stabilization in "Heat retention mode"
- Enables active DPF regeneration (replacing HC dozer) with high efficiency
- Heater ready for operation after 20 seconds
- Aftertreatment system ready for operation after approx. 60 seconds in high conversion mode
- Compliance with future emission norms
- 12 V / 24 V / 48 V on-board network compatibility,

Dosing release temperature

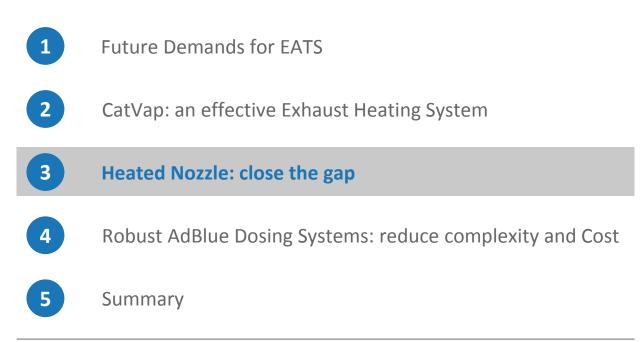


✓ Dosing release time improved by approx 420 sec.

STRICTLY CONFIDENTIAL | 11/8/2023 | 8 |

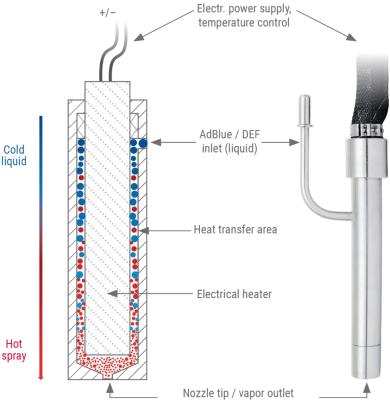
Engine test bench results with CatVap of MD diesel engine NOx emissions in WHTC

EURO 7 limits achieved on existing EURO VI EATS with integration of CatVap


STRICTLY CONFIDENTIAL | 11/8/2023 | 9 |

CatVap® Capability

- CatVap[®]:
 - heating up the exhaust gas/system and reducing start up time for the aftertreatment
 - keeping the temperature on a sufficient level for SCR conversion, even during low load and idle operations
- Engine Temperature Management can be avoided
- Engine can be calibrated for best efficiency, with high engine-out NOx emissions
- Engine fuel savings are higher than the energy consumption of the CatVap[®] device
- EURO 7 can be achieved using standard BS 6 exhaust design,
 SCR catalyst needs sufficient size for NOx conversion



Albonair Heated Nozzle

Improves SCR catalyst efficiency at low load/temperatures

SYSTEM CHARACTERISTICS

- Airless operating (air only for purging routine)
- Electrical heating of AdBlue / DEF inside nozzle
 - Evaporation of water
 - Transforming urea into liquid phase
 - Injection of urea droplets and water steam
- Initiation of urea de-composition/pre-reactions: HNCO and NH₃ before catalyst
- enable SCR operation at low exhaust/catalyst temperature with minimum energy supply

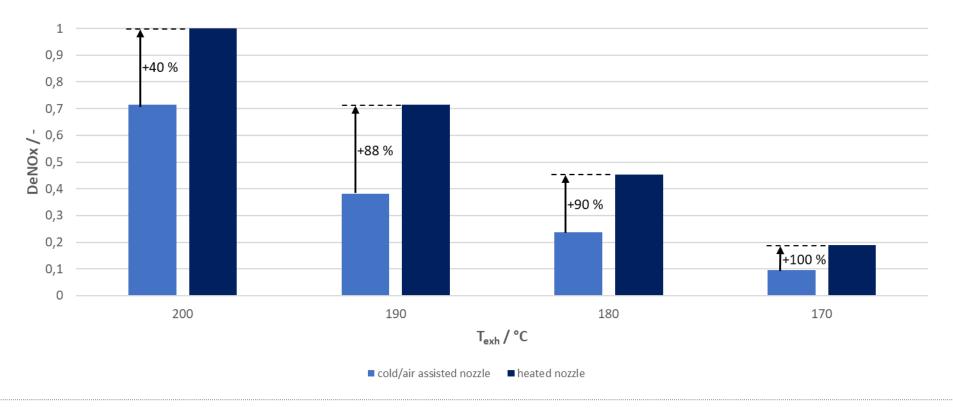
Albonair

Albonair Heated Nozzle: Motivation, Benefits and Operational Field

location and heat source of main SCR process steps/reaction	WATER EVAPORATION $t_1 \geq 100~^\circ C$		UREA IN LIQUID PHASE $t_2 \geq 133~^\circ C$		UREA DECOMPOSITION (thermolysis, hydrolysis), SCR ACTIVITY	
steps/reaction	location	heat source	location	heat source	location	heat source
State of the art "cold" UWS injection	tailpipe	exhaust gas	tailpipe	exhaust gas	tailpipe, catalyst	exhaust gas, exhaust gas
Albonair Heated nozzle: beneficial UWS injection	in nozzle	el. heater	in nozzle	el. heater	in nozzle, tailpipe, catalyst	el. heater, exhaust gas, exhaust gas,

Pre-heated close coupled AdBlue® dosing, combined with suitable SCR-catalysts:

- potential for very early NOx reduction (low load, cold start)
- improves catalyst light-off and NOx reduction rate
- to meet future (stringent) On-/Off-Road emission regulations (EU 7, CN 7,...)

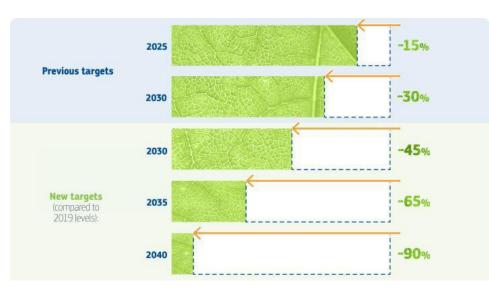

Heated Nozzle:

suitable option (also single dosing) for applications with basically low NOx emissions, like H2-ICE.

Heated nozzle: always higher DeNOx rate than conventional nozzle

- $\dot{m}_{exh} = 200 \, kg/h$
- $\dot{m}_{UWS} = 100 \, g/h$
- $\dot{V}_{NO} = 875 \, cm_s^3/min$
- > <u>qualitative</u> experiment
- > Pre-reaction/urea decomposition (NH₃, HNCO) inside of the heated nozzle clearly visible
- DeNOx potential for low exhaust gas temperatures (cold start, low load)

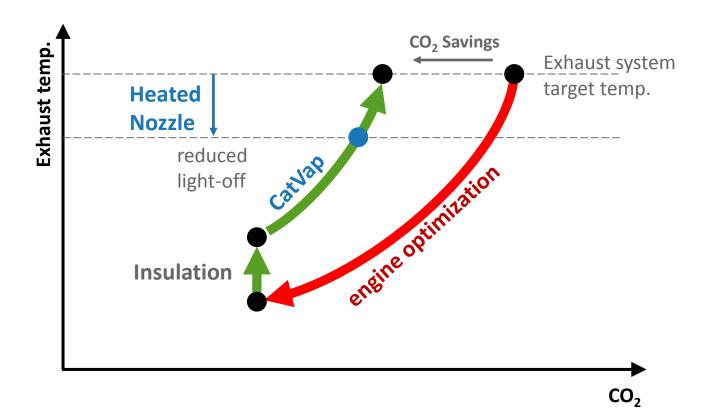
STRICTLY CONFIDENTIAL | 11/8/2023 | 14 |


Heated Nozzle Capability

- Evaporation of the water content of the AdBlue/DEF (aqueous urea solution) before injection
- > Partly Urea decomposition into NH3 and HNCO in the Nozzle
- Reducing deposit formation of AdBlue in the exhaust system at low temperatures
- Increasing the SCR catalyst efficiency at low temperatures

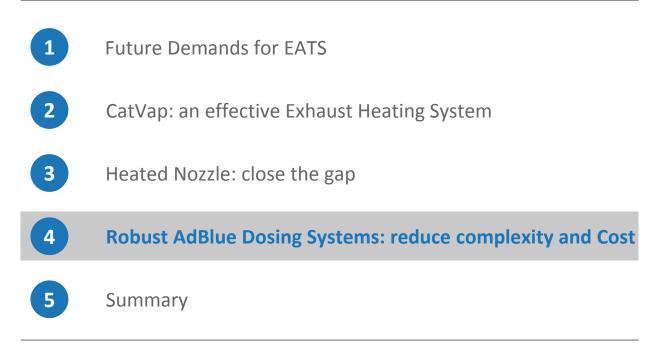
Exhaus Aftertreatment may Improve Engine Fuel consumption

- Proposal for EU CO₂ Fleet Emission will be a motivation to improve the efficiency of the EATS
- Fleet emission should be reduced by 45% until 2030 (former 30%) on the basis of 2019
- E-Trucks and H₂ trucks sales not be sufficient to achieve the target, there will be the need of additional measures to improve fuel consumption of diesel trucks



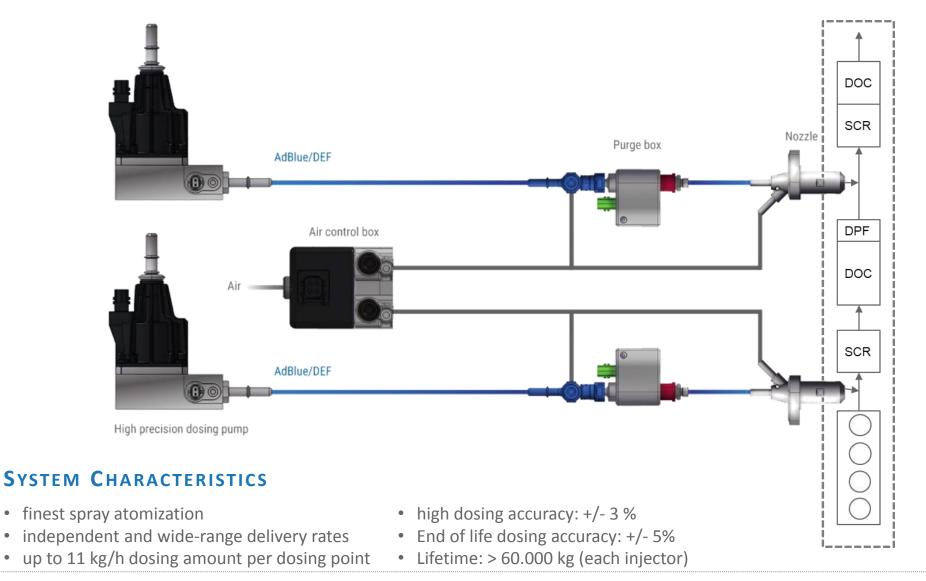
Source:

https://climate.ec.europa.eu/eu-action/transport/ road-transport-reducing-co2-emissions-vehicles/ reducing-co2-emissions-heavy-duty-vehicles_en


Albonair EU 7 Technologies lead to CO₂ Savings

Efficient Exhaust Heating will improve CO₂ Emission.

STRICTLY CONFIDENTIAL | 11/8/2023 | 17 |



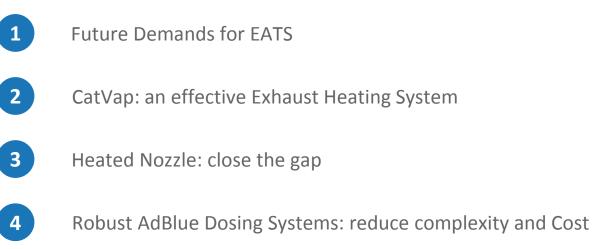
Albonair Dual dosing system

Modular design for simple system installation and integration

Albonair Airless Dual dosing system

Robust Urea Dosing System to reduce service demands and system costs

SYSTEM CHARACTERISTICS


- Airless urea injection
- Application for LD/MD, off Road application w/o air supply
- Smart and robust passive Airless Injector design
 - No electrical components
 - No moving mechanical components
 - sufficient spray & NOx performance
 - avoiding UREA crystallization
 - → ensuring high durability & reliable product
- significantly reduced costs
- No Aftercooling after engine shut off
- No limit on Nozzle Tip Temperature as there are no movable or electric parts in the nozzle

STRICTLY CONFIDENTIAL | 11/8/2023 | 21 |

Summary

- EU 7 emission regulation is still open. Decision is expected in Q1/2024
- Most stringent proposal of the EU commission is technical feasible; however, it has a high-cost impact on the vehicles
- > The Albonair CatVap system shows capability to improve emissions close to EU 7 limits
- The Albonair Heated Nozzle may close the gap for very low emission targets by SCR conversion at low temperatures
- Future CO2 emission regulation will lead to reduced exhaust gas temperatures and force efficient exhaust gas heating in low load
- Dual Dosing may be an effective solution, if packaging requirements for two SCR systems can be met
- The new airless dosing system of Albonair is a robust solution with minimized components

German Engineering for Clean Air

STRICTLY CONFIDENTIAL | 11/8/2023 | 23 |