Johnson Matthey Inspiring science, enhancing life

Contribution of ATS on CO₂ Reduction for CAFÉ Phase 2

Satoshi Sumiya, Abhishek Kumar

Johnson Matthey India

JM

Contents

- CAFÉ Phase 2 overview
- Countermeasures on ATS
 - Stop/Start strategy
 - ✓ Gasoline
 - ✓ Diesel
 - Effect of substrate specifications
 - Effect of system layout
 - Catalytic performance improvement

Summary

Cafe Phase 2 Over View

Both Diesel and Gasoline need CO_2 reduction strategy to meet the café 2 target in 2022

Source : K Senthur Pandian, ECMA International Conference 25th Oct., 2018

• BS VI introduction with RDE (2023~) need to be managed simultaneously!

Fuel Economy Improvement

- ATS related Countermeasures

- Electric Vehicle: After treatment system (ATS) is not required however will take time for successful industrialization
- **Hybridization:** Successful in other part of world however technology add significant cost increase for buyers
- Engine / Vehicle improvement: Engine efficiency has increased over the past several decade and simultaneous below mention idea contribute to fuel economy improvement significantly
 - ✓ ATS applicability to Start-Stop system
 - ✓ Catalyst performance improvement can contribute significantly

Formulation improvement

Substrate specifications (Cell density, porosity.....)

System configuration

Formulation improvement

Calibration (Urea dosing for SCR, Lean-Rich strategy for NSC)

Fuel Economy Improvement

- ATS related Countermeasures
- Electric Vehicle: After treatment system (ATS) is not required however require time for successful industrialization
- Hybridization: Successful in other part of world however technology add significant cost increase for buyers
- Engine / Vehicle improvement: Engine efficiency has increased over the past several decade and simultaneous below mention idea contribute to fuel economy improvement significantly
 - ✓ ATS applicability to Start-Stop system
 - ✓ Catalyst performance improvement can contribute significantly
 - **Formulation improvement**

Substrate specifications (Cell density, porosity.....)

System configuration

Formulation improvement

Calibration (Urea dosing for SCR, Lean-Rich strategy for NSC)

- CO₂ Advantage

Vehicle : 1.6 L (DI Turbo)

ECMA's 12th International Conference, 14th – 15th Nov., 2019

5

- Brick temperature profile over NEDC

• No Negative impact on temperature profile was observed with Start stop system

- Bag emissions

- CO / NOx were equivalent
- Small increase in THC was observed with start stop system

- HC emission analysis at post pre-catalyst

• HC spikes were observed at "start" points

JM

ECMA's 12th International Conference, 14th – 15th Nov., 2019

Start Stop System – LDD (Light Duty Diesel) - Vehicle : Engine size 2 L, CR

• Temperature profile was comparable with/without start stop system

JM

Start Stop System – LDD (Light Duty Diesel)

- Engine out and tailpipe emissions
 - Engine out CO / HC were reduced with start stop system
 - CO / HC tailpipe emissions were also reduced with start stop system

Start Stop System – LDD (Light Duty Diesel)

- Summary

- Around 3 % of CO_2 reduction was observed with Start Stop system
- Stop/Start system showed an emission benefit for HC & CO emissions

Effect of Substrate Specifications [Gasoline]

• Higher cpsi improves NOx emission

JM

Effect of Substrate Specifications [Gasoline]

• Thicker wall and Higher cell density showed higher backpressure.

Effect of Substrate Specifications [Diesel]

• High cell density showed performance advantage, but delivered higher backpressure

SCR volume / L

Effect of System Layout [LDD]

- Pre-SCR (flow-through) gives higher conversion than SCRF only
- Advantage on transient cycle can be expected

Formulation Improvement - SCR

- BS VI SCR improved thermal stability from previous technology.
- This allow to apply to SCRF application

JM

Formulation Improvement - NSC

• New NSC achieved significant performance gain across the temperature window

Summary

Start Stop System

- Both Gasoline and Diesel application demonstrated around 3 % of CO₂ reduction
 - Start stop with 1.6 L Gasoline ;
 - ✓ Increase in HC emission was observed (potential risk?)
 - Start stop with 2.0 L LDD ;
 - $\checkmark\,$ CO/HC tailpipe emission was improved with the system

Substrate Specifications

 Higher cell density and thinner wall thickness showed advantage in emission (Though BP was negative)

System Layout

• Pre-flowthrough SCR improved NOx conversion across the temperature window

Catalytic performance improvement

• Advanced formulations are used for BS VI

To achieve CAFÉ Phase 2, combination with multiple countermeasures will be needed

Johnson Matthey Inspiring science, enhancing life

JM