

HORIBA RDE+ Application: Whole Vehicle RDE Compliance Solution

Pune, India - 15th November 2019 steve.whelan@horiba-mira.com

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - Vehicle load replication (complex method)
 - "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in the-Loop
 - Virtual Tools
- Conclusions

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Introduction

Regulatory Standards

- To regulate light-duty vehicle emissions, the WLTP and WLTC was implemented throughout Europe in late 2017, replacing the NEDC.
- This was joined by the supplementary on-road procedure called RDE utilising PEMS.
- RDE regulations cover altitude, temperature and driving style as well as numerous other parameters.

Introduction What can be done to reduce Time, Cost and Risk?

Introduction RDE+ Application Portfolio

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Methodology – Road Testing Vehicles and Instrumentation

Euro Vehicle Segment	B (2016)		C (2015)	M (2017)
Body Type	5 Door Hatchback		hback	5 Door MPV
Engine (Power)	Gasoline, 3 Cyl, 998cc, Turbocharged (74kW)	Die: Turk	sel, 4 Cyl, 1499cc, bocharged (88kW)	Diesel, 4 Cyl, 1461cc, Turbocharged, 48v Hybrid (81kW)
Transmission	Manual 5 Spd Manual 6		Spd	
EU Emission Standard	EURO 6b			
Aftertreatment	TWC	EGF	R + DOC/DPF/LNT	EGR + DOC/DPF/LNT
Mass in Service [kg]	1130		1399	1583
PEMS	HORIBA OBS ONE GS12 Gas Analyser & Particle Number Unit			
Amb. Temp. Rel. Humidity	HORIBA OBS ONE Weather Station			
Altitude [m]	HORIBA OBS ONE GPS			
Base Instrumentation	National Instruments CompactDAQ System: NI 9185/9862/9214/9205			
Driveshaft Strain Gauges	Astech Electonics Rotary Telemetry System (RE3D)			

EXHAUST SYSTEM

· Exhaust gas mass flow rate and temperature • CO₂, CO, NOx & PN Pre & post TWC temperature Pre & post LNT temperature (diesel only)

DRIVER INPUT

ENVIRONMENT

& humidity

- Throttle, brake & pedal position Ambient temperature, pressure
 - Steering angle
 - HVAC settings

- - VEHICLE Vehicle & wheel speed Tyre pressure
- Latitude, longitude & altitude
- Cabin & under bonnet temperatures

 Road slope (gradient) POWERTRAIN

Engine speed

- Intake air temperature
- Pre & post intercooler air
 - temperature
- Pre & post radiator coolant temperature
- · Engine and gearbox oil temperature
- Battery state of charge & current draw
 - Alternator current draw
 - Drive shaft torque

Methodology – Road Testing Routes and Parameters

- Gentle < 50%-
- Moderate $\geq 50\% \leq 70\%$
- Aggressive > 70%-

RDE regulation parameter va_pos[95] as a percentage of its limit:

Methodology – Road Testing **Emissions Results Overview**

- All RDE emissions data is normalised to corresponding WLTC emissions data (diamond icon); expressed as the ratio of RDE to WLTC emissions minus one.
- Significant variations in NOx and PN over full range of RDE conditions.
- CO₂ trend as expected more aggressive driving, more work done.
- Typical results for the gasoline vehicle are shown.
- More details of the road testing and associated results is reported in SAE Technical Paper 2019-01-0756.

NOx is typically higher for gentle drives compared to aggressive drives on the same route (opposite trend for PN)

Possibly caused by "light-out" of the TWC during gentle drives?

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Methodology – Chassis Dynamometer Testing Chassis Dynamometer Specification and Equipment

	Equipment
Analyser Room	HORIBA Supplied:
	DLT and DLS dilution tunnel and sampler
	CVS-ONE constant volume sampler
	MEXA ONE D2 EGR raw exhaust gas sampler
	MEXA ONE C1 SL OV dilute exhaust gas (bag) analyser
	MEXA 2000 SPCS solid particle counter
	MEXA ONE QL NX Quantum cascade laser system
	GMC ONE particulate measurement
	PFS ONE robotised particulate filter weighing system
	OBS ONE PEMS kit (gaseous and particle)
Test Cell	FWD, RWD, AWD
	-20°C to 35°C (plus 3 climatic soak chambers)
	30-60% relative humidity
	Vehicle cooling fan
Dynamometer	230kW per axle
Data	300km/h maximum speed

Methodology – Chassis Dynamometer Testing **Chassis Dynamometer Specification and Equipment**

3.) Reference pressure for breather system return 4.) MEDAS return from exhaust system

HORIBA Multi-Function Efficient Dynamic Altitude Simulation (MEDAS) unit will be used for altitude and ambient temperature requirements for RDE+

Methodology – Vehicle Load Replication

Highly instrumented vehicle to measure loads

- To accelerate the R2R RDE+ methodology, the chassis dynamometer testing focused on the gasoline vehicle: simple aftertreatment, sea-level driving route (Nuneaton, UK).
- Vehicle load measured directly via strain gauges on drive shafts
- "Effective road gradient" derived by subtracting coastdown terms and inertia from the measured road data – programmed into chassis dynamometer with vehicle speed and gear selection.
- Human driver used throughout initial RDE chassis dynamometer drive.

	Work [MJ]	CO [g]	CO ₂ [g]	NOx [g]	PN [#]
Road	52.1	43.1	14830	22.97	2.13E+14
Chassis	54.1	44.3	15139	21.30	1.90E+14
Delta [%]	3.8	2.8	2.1	-7.3	-10.8

RΑ

Methodology – Vehicle Load Replication Human Driver vs. Robot Driver (1)

- To improve repeatability and durability of the ~90 minute RDE cycle replication, a robot driver has been used for further testing. The robot has been trained to follow the cycle, change gear and brake.
- The robot was more accurate, repeatable and durable.
- Overall, a very good correlation was made with the human driver.

Methodology – Vehicle Load Replication High Altitude Route, Robot Driver, Initial Results (1)

* Issue with PEMS CO analyser

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Replicating Real World Load Can Be Complicated

Traditional Track to Lab Model (Assumption):

 $F(t) = (A + B * v (t) + C * v (t)^{2}) + M * \frac{dv (t)}{dt}$

But the real world has variable road grade:

 $F(t) = (A + B * v (t) + C * v (t)^{2}) + M * \frac{dv(t)}{dt} + M * g * sin\alpha(t)$

But the real world has variable winds:

$$F(t) = \left(A + B * \mathbf{v}_g(t) + C * \mathbf{v}_a(t)^2\right) + M * \frac{dv_g(t)}{dt} + M * g * sin\alpha(t)$$

But the real world has variable air densities:

 $F(t) = \left(A + B * v_g(t) + \rho(t)/\rho_0 * C * v_a(t)^2\right) + M * \frac{dv_g(t)}{dt} + M * g * sin\alpha(t)$

But this road load equation is still an idealization, road surfaces change from block to block, cornering affects load, and road grade is difficult to measure precisely with high resolution:

There must be a better way...

© HORIBA MIRA Ltd. 2019

... a better way, HORIBA "Torque Matching"

Forget all the load modeling and abstractions

Road Test

- Record speed, pedal, weather conditions
- Any grade, surface, weather, altitude, and cornering

Lab Validation Test (Road Test Replication)

- MEDAS matches ambient
- Dyno matches speed
- Robot driver matches pedal
- Dyno torque recorded

Lab Tests (Road Test Simulations)

- MEDAS matches ambient
- Dyno matches speed
- Robot driver matches torque
- Change vehicle calibration or emission controls as desired and repeat test

Torque Matching Simulates Real World Load

Torque Matching on a Chassis Dynamometer

- No coastdowns
- No road grade measurement or estimation
- Blind testing is enabled
- Lab testing precision is enabled
- Impact of changes to vehicle or calibration can be assessed with back to back, repeatable testing

• No torque wheels or instrumented drive shafts

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Methodology – Engine-in-the-Loop Equipment

	Equipment		
Analysers	MEXA ONE D2 EGR exhaust gas analysis system		
	OBS ONE PEMS GS12 kit (gaseous and particle)		
	MEXA-2100SPCS Real Time Particle Counter		
	MEXA ONE QL NX Quantum cascade laser system		
Test Cell	HORIBA DYNASPM LI 470 AC Dyno		
	Hot and cold box (engine containment) -30°C to 50°C		
	HORIBA MEDAS – temperature, pressure and humidity		
Misc	AVL Indicom X-Ion high-speed data acquisition		
	ETAS INCA		
	HORIBA STARS SPARC		
	HORIBA STARS Calibrate (pseudo-automapping		
	functionality)		
	IPG CarMaker virtual simulation tool (vehicle and		
	driving style)		

Methodology – Engine-in-the-Loop EiL Setup (1)

VEHICLE, ROAD, DRIVER & ENVIRONMENTAL DATA

Methodology – Engine-in-the-Loop EiL Setup (2)

- IPG CarMaker to STARS interface successfully installed purchased vehicle, no OEM support.
- Currently running through Nuneaton RDE cycle with different driving modes.

ased vehicle, no OEM support. ring modes.

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Methodology – Engine-in-the-Loop Sea Level Route, EiL Initial Results (1)

- Effects of driving style on vehicle and engine performance across Nuneaton, UK RDE route assessed using IPG CarMaker.
- 5 parameter DOE optimising for va_pos[95]
 % of limit HORIBA MIRA definition of driving style.
 - Longitudinal and lateral acceleration
 - Longitudinal deceleration
 - Pedal dynamics
- 3 cycles run across fixed route
 - Gentle drive va_pos[95] % of limit = 40%
 - Normal drive va_pos[95] % of limit = 70%
 - Aggressive drive va_pos[95] % of limit = 90

26

Methodology – Engine-in-the-Loop Sea Level Route, EiL Initial Results (2)

- Rapid screening of calibration and hardware changes without needing to schedule on-road RDE testing.
- Run repeat RDEs without influences such as traffic, weather and other anomalies.
- Identify problematic areas of the engine operating map that are often not related to time residency.
- Resolve cycle emissions before prototype testing.

27

Methodology – Engine-in-the-Loop Sea Level Route, EiL Initial Results (2)

- Introduction
- Methodology
 - Road Testing
 - Chassis Dynamometer
 - o Vehicle load replication (complex method)
 - o "Torque Matching" (new unique HORIBA simplified method)
 - Engine-in-the-Loop
 - Virtual Tools
- Conclusions

Conclusions

- HORIBA MIRA's R2R RDE+ test methodology has been described.
- The road part of the programme is complete with work underway on the chassis dynamometer and EiL segments.
- Sea-level and high altitude, cold temperature RDE routes have been successfully correlated with the vehicle driven on the chassis dynamometer utilising a robot driver and HORIBA MEDAS altitude emulation device.
- The effects of driving style on engine performance and emissions for a fixed RDE route have been presented using an EiL toolchain.
- The EiL methodology will allow OEMs to front-load powertrain design, development and calibration activities thus resulting in fewer prototype vehicles and physical climatic testing to achieve RDE compliance.
- By adopting road, chassis, EiL and virtual testing (RDE+), many of the unknown scenarios that arise through real testing can be mitigated much further upstream; thus reducing time, effort, money and pollution.

Thank you

감사합니다 Cảm ơn ありがとうございました Grazie धन्यवाद நன்ற 谢谢 **Obrigado** Tack ska ni ha Большое спасибо Gracias