

# Strategies and Challenges in Exhaust Aftertreatment Systems to meet upcoming OH Emission Regulations of India

Naresh Phansalkar Tenneco

October 25<sup>th d</sup> 2018



- Off Road Emission Legislation and potential ATS configurations
- Emission & Exhaust After-treatment Technologies
- Emission Development Strategies
- After-treatment Challenges in Off Road systems
- Summary



# Off Road Emission Legislation Road Map

- Emission & Exhaust After-treatment Technologies
- Emission Development Strategies
- After-treatment Challenges in Off Road systems

Summary

## World Wide OH Regulation



| Country | Engine Range -<br>Power (kW)                                | Apr-11 Apr-12 Apr-13 | Jan-14 | l Oct-15 Apr-16 Apr-17 Apr-18 | Apr-19 | 0 Oct-20 Apr-21 Apr-22 Apr-23 | Apr-24 Apr-25 Apr-26 Apr-27 |
|---------|-------------------------------------------------------------|----------------------|--------|-------------------------------|--------|-------------------------------|-----------------------------|
| US      | 37 < P < 56<br>56 < P < 75<br>75 < P < 130<br>130 < P < 560 | Tier 4 Int / Stage 3 | 3 B    | Tier 4 Final / Stage 4        |        |                               |                             |
| Europe  | 37 < P < 56<br>56 < P < 130<br>130 < P < 560<br>560 < P     | Stage III B          |        | Stage IV                      |        | Sta                           | ge V                        |
| China   | 37 < P < 56<br>56 < P < 75<br>75 < P < 130<br>130 < P < 560 | Stage II             |        | Stage III                     |        | Stage IV                      | / Tier IV                   |
| India   | 8 < P < 56<br>56 < P < 75<br>75 < P < 130<br>130 < P < 560  |                      |        | Stage III A                   |        | Stage IV                      | Stage V                     |

# Off Highway Emissions





Tier 4 Final has Stringent NOx requirement compared to Europe and India. PN limits are included in EU / BS Stage V

CONFIDENTIAL AND

5

# OH ATS potential configurations of Catalyst Elements



| Bharat OH Emission standards      |     |              |     |       |         |     |                  |                   |  |
|-----------------------------------|-----|--------------|-----|-------|---------|-----|------------------|-------------------|--|
| Engine Power                      | СО  | нс           | NOx | PM    | PN      | NH3 | Test Casta       |                   |  |
| kW                                |     | g/kWh        |     |       | #/kWh   | ppm | lest Cycle       | AIS Configuration |  |
| Bharat OH Stage IV - October 2020 |     |              |     |       |         |     |                  |                   |  |
| P < 8                             | 8   | 7.           | 5*  | 0.4   | -       | -   |                  | No ATS            |  |
| 8 ≤ P < 19                        | 6.6 | 7.           | 5*  | 0.4   | -       | -   | NRSC             | No ATS            |  |
| 19 ≤ P < 37                       | 5   | 4.           | 7*  | 0.025 |         | -   |                  | No ATS            |  |
| 37 ≤ P < 56                       | 5   | 4            | .7  | 0.025 | -       | -   |                  | DOC (optional)    |  |
| 56 ≤ P < 130                      | 5   | 0.19         | 0.4 | 0.025 | -       | 10  | NRSC and<br>NRTC | DOC + SCR         |  |
| 130 ≤ P < 560                     | 3.5 | 0.19         | 0.4 | 0.025 | -       | 10  |                  | DOC + SCR         |  |
| Bharat OH Stage V - April 2024    |     |              |     |       |         |     |                  |                   |  |
| P < 8                             | 8   | 7.5*<br>7.5* |     | 0.4   | -       | -   | NRSC             | No ATS            |  |
| 8 ≤ P < 19                        | 6.6 |              |     | 0.4   | -       | -   |                  | No ATS            |  |
| 19 ≤ P < 37                       | 5   | 4.7*         |     | 0.015 | 1×10^12 | -   | NRSC and         | DOC+DPF           |  |
| 37 ≤ P < 56                       | 5   | 4.7*         |     | 0.015 | 1×10^12 | -   |                  | DOC+DPF           |  |
| 56 ≤ P < 130                      | 5   | 0.19         | 0.4 | 0.015 | 1×10^12 | 10  | <u>NRTC</u>      | DOC+DPF+SCR       |  |
| 130 ≤ P < 560                     | 3.5 | 0.19         | 0.4 | 0.015 | 1×10^12 | 10  |                  | DOC+DPF+SCR       |  |
| P ≥ 560                           | 3.5 | 0.19         | 3.5 | 0.045 | -       | -   | NRSC             | DOC               |  |

6





# Emission & Exhaust After-treatment Technologies

- Emission Development Strategies
- After-treatment Challenges in Off Road systems

Summary

# Engine & Exhaust After-treatment Technologies for OH



| Tractor application : Current : 50 ppm<br>Stage- IIIA                                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                         |  |  |  |  |  |  |
| Current Engine Technologies                                                             |  |  |  |  |  |  |
| >< 19kW : 1-2 Cylinder , NA , M-FIE                                                     |  |  |  |  |  |  |
| >< 37kW : 3-4 Cylinder , <3 liter displacement , NA / TC , M-FIE / E-FIE                |  |  |  |  |  |  |
| >< 75kW : 3-4 Cylinder , <5 liter displacement , NA / TC , , M-FIE / E-FIE , Cooled EGR |  |  |  |  |  |  |
|                                                                                         |  |  |  |  |  |  |

- Engine Technologies
- ≻Combustion changes , E-FIE , CR ,
- ≻ High pressure Fuel injection , High CR
- >Turbocharging
- ≻ EGR

#### After-treatment Technologies

- Diesel Oxidation Catalyst (DOC)
- ➢Partial Filter ( PFF )
- Diesel Particulate Filter (DPF)
- Selective Catalyst Reduction (SCR)

#### Fluid Technologies

Low Sulfur fuel , 10ppm eta 2019
 Low SAPS Lubrication Oil – CJ4 , CK4

#### Control System Technologies

Engine Control System (ECU)
 After Treatment Control system (ACU)

#### Tenneco Particulate Matter Abatement Technology : DOC + DPF TENNECO

➤ Capable of more than 95% PM conversion



### Tenneco NO<sub>X</sub> Abatement Technology : UDS + Mixer + SCR



TENNECO



- Off Road Emission Legislation Road Map
- Emission & Exhaust After-treatment Technologies
- Emission Development Strategies
- After-treatment Challenges On Off Road Vehicles
- Summary

# Potential Engine + After-treatment Development Strategies for $37kW \le P < 56kW$ , India Stage-IV off-road





#### After-treatment Development Strategies $56kW \le P < 75kW - India Emission Legislation$







- Off Road Emission Legislation Road Map
- Emission & Exhaust After-treatment Technologies
- Emission Development Strategies
- After-treatment Challenges On Off Road Vehicles
- Summary

### Challenge : End Customer / User requirements





### Challenge : Diversity of Equipment & Application



| Sector                     | Application                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| Tractors/<br>Agri Machines | <ul> <li>Ploughing</li> <li>Puddling</li> <li>Haulage</li> <li>Harvesting</li> <li>PTO driven</li> </ul> |
| Earthmoving<br>Equipment   | <ul> <li>Backhoe Loader</li> <li>Compact Loader</li> <li>Loader</li> <li>Dozer,</li> </ul>               |
| Transportation             | Ground support<br>equipment in airports                                                                  |
| Material<br>Handlers       | <ul><li>≻ Fork-lift</li><li>&gt; Crane</li></ul>                                                         |
|                            |                                                                                                          |

Tenneco offers a variety of aftertreatment system designs to address the diversity of applications.

### Challenge : After-treatment Packaging





Integration of Tenneco after-treatment systems in existing packaging space is unique for each application

#### **Off Road After-treatment Systems**





#### Challenge : System Integration Requirements



Uniform Temperature Distribution





All Tenneco systems are designed to achieve optimum distribution of exhaust flow & urea atomization in complex exhaust layouts ensured by multiple loops of virtual and physical validation

#### Challenge : Equipment Duty Cycle Variation





Source : www.epa.gov

Tenneco Aftertreatment Systems are designed for every duty cycle application

### Challenge : Transient Emission Cycles





Tenneco systems can adopt unique calibration strategies for every application

#### Challenge : Reliability & Durability Requirements





- Higher useful life expectancy as compared to on-road vehicles
- Expose to high level of dust and debris
- Vibration and shock load
- Extreme weather conditions
- Overload operation
- Urea adulteration and contamination.
- Urea storage and handling
- Technology awareness
  - End Customer
  - Service

Tenneco systems are designed and tested to work in severe and harsh usage conditions.



## Challenge : Fluid (Fuel, Adblue, Oil )



- Fuel Regulation : Low Sulfur availability
  - Catalyst deactivation due to high sulfur fuel
  - Sulfate formation leads to increased in particulate matter emission
  - NO<sub>2</sub> generation capability reduced impacting SCR performance
  - Sulfuric acid creation leading to corrosion in exhaust system
- Oil Technology : Low Sulfated Ash , Phosphorus & Sulfur (SAPS)
  - Change to CJ4 / CK4 from current CH4/Cl4 oil
- Urea infrastructure
  - Adblue/DEF availability in OH regions
  - quality
  - cost

Low sulfur fuel , low SAPS oils & Adblue/DEF quality are key for after-treatment performance

# Challenge: Low Exhaust Skin Temperature Requirement



- Low skin temperature
  - Heat shield (heat retention) design & packaging
  - Heat shielding
- Tail pipe temperature mitigation
  - Use of heat diffusers / aspirators to mitigate high exhaust gas temperatures exiting from tailpipe.



Skin temperature and exhaust thermal management is a paramount factor for safe operation, that all Tenneco systems are developed with.



- Off Road Emission Legislation Road Map
- Emission & Exhaust After-Treatment Technologies
- Emission Development Strategies
- After-Treatment Challenges On Off Road Vehicles





- Technology path is dependent on Power Category.
- Tenneco offers tailored solutions addressing all challenges.
- Several potential solutions are possible and Atertreatment system integration is essential for effective handshaking with engine.
- Future emission regulations for off-road would require a combination of DOC, DPF & SCR technologies integrated together.



# Thank you !



# Cleaner, quieter, smoother, safer

Naresh Phansalkar