Prepared for

12th International Conference, Emission Controls Manufacturers Association

Pune, 14th November 2019 Milap Patel, Gasoline Powertrain

- Indian Emission Road Map \rightarrow Why Gasoline over Diesel?
- Gasoline Direct Injection \rightarrow Potential Technology for CO₂ Reduction
- CNG Direct Injection \rightarrow A step ahead of GDI for CO₂ Reduction
- Challenges in Emission Control with GDI engines \rightarrow GPF Calibration
- FEV's Contribution

Indian Legislative Cumulative Emission Limits Gasoline Engine Turns Out to be Forerunner for Emission Reduction

CUMULATIVE EMISSION- A LOOK BACK AND WAY AHEAD ...

Description

- legislative limits The for cumulative emission provide pollutants ~1.73 times for more margin gasoline emissions above emissions. makina diesel gasoline engines a preferred choice.
- Comparatively, gasoline engines need less complex EATS for emission control and thus brings down overall cost of product development.
- GDI, a promising technology towards reduced CO₂ emission, increased power rating with scope of down sizing becomes imperative.

Source: SIAM, siamindia.com

Emission Roadmap: India BSVI and Ahead \rightarrow CO₂ Emission Reduction Becomes Imperative

Estimated Implementation Schedule	Bharat Stage IV	Bharat Stage VI (04/20)		Post BS VI ?
	2017 2018 2019 2	2020 2021 2022	2023 2024	2025 2026 2027
Emission Limits	BS IV	BS VI Post BS VI		
Particulate Number Emission Limits		6 x 10 ¹² 1/km	6 x 10 ¹¹ 1/km	Post BS VI
MIDC Procedure				
WLTP Procedures			draft notification doe "world harmonized lig (WLTP) wi	s not specify whether or when ht duty vehicles test procedure" Il be adopted in India
WLTP Additions (-7°, MAC, OCE, OBD)				Later than 2025
New Pollutants and GHG				NO ₂ , N ₂ O, NH ₃ , Ethanol, Aldehydes ?
Real Driving Emissions		Monitoring	Conform	ity Factors TBD
CO ₂ Fleet	130 PC g/km on NEDC	113 PC g/km on NEDC Target values on WLTP?		

Sources: FEV research and analysis; EC, "Commission Regulation (EU) 2016/427", March 31st 2016;

* M, N1 vehicles starting Jan. 2020

** may be changed according to measurement technique

RE/BG

CO_2 Emission Targets Demand of Efficient engines \rightarrow Gasoline engines with less CO_2 emissions

Worldwide regulations for CO_2 reduction – CO_2 fleet targets (g/km) NEDC based

* Proposed Target

Recent Technologies for CO₂ Reduction GDI emerges as a Superior Solution

Source: CAR Research, USEPA/NHTSA Technical Assessment Report; Various media publications

Gasoline Direct Injection- Generic System Layout & Hardware Requirements

Not shown in this chart: Coolant -, Crankshaft-, Camshaft-, Knock-Sensor

System Configuration

- Engine size → 1.0 2.0 I
- Torque range → Upto 400 Nm
- Power range \rightarrow Upto 150kW
- Boosting → Upto 2.5 bar (gauge)
- Fuel Rail pressure → Upto 300 bar
- Fuel Injector → 6-8 holes, piezo type
- EGR \rightarrow Low pressure EGR
- VVT \rightarrow Continues phasing
- VVL \rightarrow 2 stage

Comparison of Air Induction- GDI vs. MPI Higher Compression Ratio in GDI leading to Better Thermal Efficiency

ADVANTAGE OVER MPI- HIGHER COMPRESSION RATIO

TDC_0 Ignition base

Start of injection

Comparison of GDI vs. MPI \rightarrow Market Case Study Possible Benefits due to Downsizing

POSSIBLE BENEFITS DUE TO DOWNSIZING \rightarrow 1.2 L MPI VS. 1.0 L GDI

Source: SIAM, Cardekho.com, TeamBHP Courtesy: Maruti Suzuki India Limited

Compressed Natural Gas Motivation for Using CNG as a Cleaner Fuel

Source: NGVA, Center of Automotive Research

CNG DI- State of Art technology for Emission Reduction GAS Only- GASON EU Summit May'15 to March '19

FEV'S INVOLVEMENT IN GASON WP4 WITH RSA AND CONTINENTAL

Source: Gason

The GASON project has been funded by the Horizon 2020 EU Research and Innovation programme, under Grant Agreement no. 65281

CNG Direct Injection System Layout and Hardware Requirements

FEV

GENERIC HARDWARE LAYOUT

System Configuration

- Gas tank: Upto 250 bar pressure
- CNG rail: Upto 30 bar pressure
- Fuel pressure regulator: 2 stage, electronically controlled
- EMS: Master-Slave configuration, slave CNG injection controller
- CNG Injector: Solenoid type, 6-8 holes
- Turbocharging: Yes, to be designed for higher exhaust gas temperature

Source: VKA, RWTH Aachen

BHARAT 6 Emission Standards for 'M' Type 4 Wheeler Comparison with EU6, CN6 for PM and PN emissions

UPCOMING BS-VI NORMS- IMPACT ON GDI ENGINES

*EU6c PN limits equivalent to EU6d-TEMP

Particulate Emission Generation Motivation for Integrating Gasoline Particulate Filter (GPF)

REASONS FOR PARTICULATE EMISSION GENERATION \rightarrow NEED FOR GASOLINE PARTICULATE FILTER

Source: FEV

GPF Hardware and Calibration Overview Requirements and Challenges in GPF Calibration

FEST

INTEGRATION OF GPF BRINGS A NUMBER OF ADDITIONAL TASKS → AIM IS TO MINIMIZE EFFORTS

Calibration Task	Content		
Soot load modelling	Engine out emissions Dynamic correction		
GPF monitoring	Sensor calibration On-board diagnosis		
Active regeneration	Triggering (soot mass limit), Execution		
Soot oxidation modelling	Duration of active regeneration		
Component Protection	Temperature monitoring and control		
Ash Modelling	Generation of ash		
Workshop mode	Forced regeneration GPF replacement		
Sootload			

Source: FEV magazine, Nov'18

Example of Successful Engine Development by FEV for HONDA Honda VTEC 1.0 Turbo GDI

FEV

FEV's Integration with Ford Motor Company FORD ECOBOOST 1.0 T-GDI with Flex Fuel Adaptation

FORD ECOBOOST 1.0L

ENGINE OF THE YEAR: 2012 TO 2017 🕡

- Technical Highlights and Data
 - In Line 3 Gasoline Engine with 92 kW / 170 Nm @ 1300 – 4500 rpm / overboost 200 Nm
 - 109 CO₂ g/Km
 - DI-VCT / Integrated exhaust manifold / Oily belt for timing drive and oil pump drive / Split cooling / Variable flow oil pump
- FEV's Project Involvement
 - Design and CAE for Pre-XO
 - Procurement and QS 1
 - Engine built, commissioning, run-in and sign-off for 36 engines
 - Combustion development for Stage 1

Prepared for

12th International Conference, Emission Controls Manufacturers Association

IMPLEMENTATION IN INDIA

Pune, 14th November 2019 Milap Patel, Gasoline Powertrain,

