HORIBA Explore the future

PEMS Performance in Specific Environmental Conditions for IRDE with High and Varying Altitudes and Temperature

15th Nov. 2019

HORIBA.Ltd. Lead of Automotive Analytical R&D Division Kazuya TSURUMI

Contents

1	Background
2	Enhancement of PEMS for high and varying altitudes and temperatures
3	Experimental results
4	Summary

1	Background
2	Enhancement of PEMS for high and varying altitudes and temperatures
3	Experimental results
4	Summary

Difficulties, Concerns for Reliable Testing at IRDE

Compare to European RDE, there are some difficulties for IRDE.

Background: RDE Overview

RDE (Real Driving Emissions) by definition is performed under a wide range of conditions.

Boundary Limit are Different per Region

Boundary limit is applied to the topography and climate for each region...

High altitude in 2,400 m is required in China.

High temperature in 45degC is required in India.

		EU	🛑 Japan	💴 China	🔤 India
Regulation		EURO 6d	Att. 119	GB 6	AIS-137
	Moderate	≤ 700 m	≤ 700 m	< 700 m	≤ 700 m
Altitude	Extended	≤ 1,300 m	≤ 1,000 m	< 1,300 m < <mark>2,400 m</mark>	≤ 1,300 m
	Moderate	0~30degC	0~35degC	0~30degC	10~40degC
Temperature	Extended	-7~0 30~35degC	-2~0degC 35~38degC	-7~0degC 30~35degC	40~45degC
					e-e

Measurement technique for PEMS toward high altitude and temperature are required.

Changing Elevation During the Test

- Varying altitude happens during RDE tests in mountainous regions or areas where the distance from sea level to mountain is short.
- Total accumulated altitude rise is regulated as 1,200 m per 100 km as CPE (Cumulative Positive Elevation gain).

Measurement technique for PEMS toward the measurement at varying altitude is required.

HORIBA

Hot Condition and Significant Temperature Gap During IRDE

- Trip requirement depends on vehicle categories .
 - Some categories will not adopt motorway.
- Urban, Rural, Motorway: Each distance should be at least 16km

1	Background
2	Enhancement of PEMS for high and varying altitudes and temperatures
3	Experimental results
4	Summary

PEMS Need to be Considered Altitude Changes

Point to consider the analytical reliability.

> Inside NDIR gas cell pressure changes from sea level to smaller than barometric pressure.

> CLD method NOx analyzer sensitivity is relative to the pressure before and after capillaries.

Countermeasure for the elevation change.

Techniques to be reliable PEMS for elevation change.

Techniques

- Inline pressure sensor implements a precise pressure compensation by sensing pressure close to the sample inlet point.
- Proportional valve with differential pressure sensor implements the precise pressure controlling toward stable sample flow rate by maintaining a certain differential pressure across the capillary.
- \geq Dehumidifier eliminates ambient humidity effect, especially for CLD because of O₃ source.

Gaseous PEMS Analyzer Countermeasure for Heat

Countermeasure point for 45 degC

Swipe any high temperature condensation inside analyzer by re-design of ventilation system

Solution example

Reinforcement of wind velocity for FAN

Add FAN inside

Cooling Analytical Equipment for PN Measurement

- Countermeasure point for 45 degC but detector is controlled at 21 and 30degC for Condenser and Saturator.
- Keep stable temperature inside PEMS even big delta T between PEMS validation and 45degC environment condition.
- Solution tried two different method.

1	Background
2	Enhancement of PEMS for high and varying altitudes
3	Experimental results
4	Summary

Elevation Change Test Data on Mt. Fuji

Route on Mt. Fuji

Mt. Fuii (3776 m) #3 Imagery ©2018 Google 2km Altitude of each point

Point [#]	Altitude [m]
1	510
2	1,000
3	1,450
4	2,000
5	2,380

Altitude change on the test exceeds CPE requirement

> Check PEMS performance on extreme altitude changing condition.

HORIBA

CO / CO2 Analyzer Sensitivity Change on Mt. Fuji

- > Similar performance to the altitude simulation chamber.
 - Pressure controlling system worked properly at high altitude.
 - > CO has slightly higher deviation than CO_2 . CO is sensitive to temperature change due to low S/N at lower pressure (10x lower Span than CO_2)
 - ✓ Measured value error: within 1.0%
 - \checkmark Standard deviation (2 σ): less than 2.0%

NOx / NO Sensitivity Change on Mt. Fuji

- Similar performance to the altitude simulation chamber.
 - Pressure controlling system worked properly at high altitude.
 - NOx and NO are sensitive to pressure change because of measurement principle.
 - Measured value error: within 1.0%
 - ✓ Standard deviation (2σ): less than 2.0%

Gaseous Component Measuring Stability at 45degC

- Result example (under evaluation currently)
- Condition : Room temperature 45 degC

Concentration: CO; 0.5 vol%, CO₂; 5 vol%, NO/NO_X; 100 ppm

Drift result @ 45 degC

Gaseous Component Sensitivity Change from Low to High Temperature.

Result example (under evaluation currently)

Condition : Room temperature 5 (start) to 45 (goal) degC Concentration: CO; 0.5 vol%, CO₂; 5 vol%, NO/NO_X; 100 ppm There is a temperature Compensation for NO and NO_X

HORIBA

PN Detector Stability under Temperature Change

1	Background
2	Enhancement of PEMS for high and varying altitudes
3	Experimental results
4	Summary

Summary: IRDE Reliable Testing Possibility

- There are significant difficulties in order to be a reliable RDE test in India comparing to the European test by environment, traffic, road condition and so on.
- Especially the altitude and high temperature are significant different occasion in India. Especially, drift test in the specific RDE procedure between PEMS validation in laboratory and end of test may have extreme condition changes.
- To comply under the specific environmental condition, the technique of cooling analyzer and pressure control or compensation could have reliable result less than 2% analyzer sensitivity changes for gaseous and PN.
- By using these techniques, it can have reliable result even under specific condition of Indian RDE.

Thank you for your attention.

