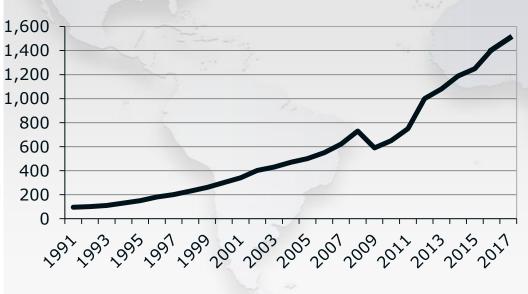


AVL List GmbH (Headquarters)

Bharat Stage VI Emission Challenges

Transition from test bed to real world vehicle emission compliance Kusumba, Manoj Graf, Gernot

Enterprise Development Automotive


RESEARCH 10% of turnover in-house R&D

INNOVATION 1500 granted patents STAFF9.500 employees65% engineers and scientists

GLOBAL FOOTPRINT

- 30 engineering locations
- >220 testbeds
- Global customer support network

GROWTH

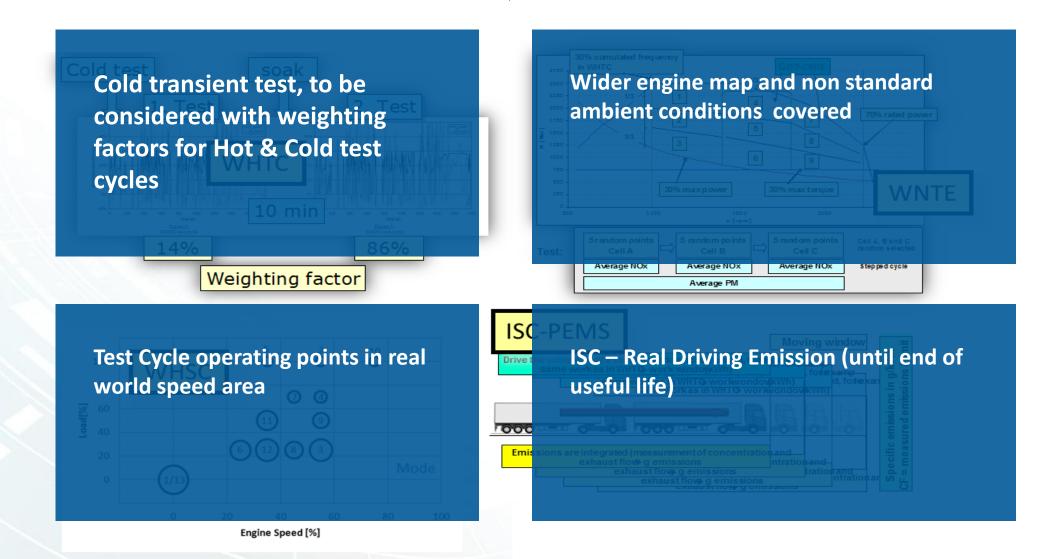
SALES
1995:
0.15 billion €
2017:
1.55 billion €
Plan 2018:
1.71 billion €

EXPERIENCE 70 years ! **5** powertrain elements

ONE PARTNER

| 26 Oktober 2018 | 2

AVL Powertrain – A Network Of Technical Centers



Legislative Requirements
 Boundary conditions in India
 Implications on Engine and Aftertreatment layout
 Technical trends

Bharat Stage VI Challenges

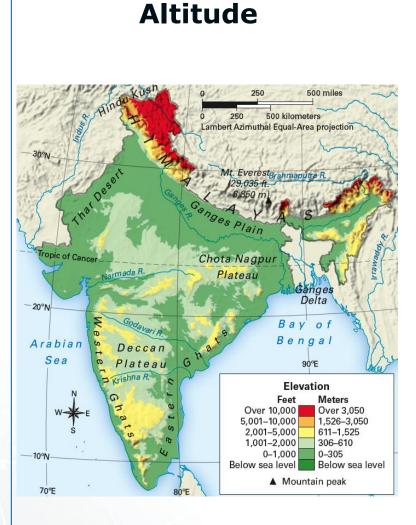
Bharat Stage VI 2020 (2023) – Overview

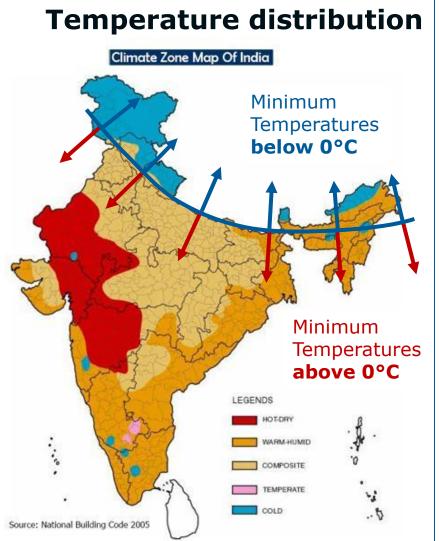
Parameter				Content				Remarks
Emission limits		CO (g/kWh)	THC (g/kWh)	NOx (g/kWh)	NH ₃ (ppm)	PM (g/kWh)	PN (#)	Test procedures according to draft AIS 137 as on 1 Jan. 2017.
	WHSC	1.50	0.13	0.40	10	0.01	8.0 *1011	* Under various ambient
	WHTC	4.00	0.16	0.46	10	0.01	6.0 *1011	conditions
	WNTE*	2.00	0.22	0.60	-	0.016	-	
Deterioration								Alternatively min. service
Deterioration factors		СО	тнс	NOx	NH ₃	РМ	PN	accumulation period (km):
	WHSC/ WHTC	1.3	1.3	1.15	1.0	1.05	1.0	160,000: N1 & M2 vehicles 188,000: N2, N3<16T, M3<7.5T
	Useful life: 700.000 / 300.000 / 160.000 km							233,000: N3>16T, M3>7.5T
OBD limits	NOx (g/k	Wh)	P	PM (g/kWh)				Including malfunction classification
	1.5 (1.2)		Р	erformance I	Monitoring ((0.025)		
In Service Conformity (ISC)	At type approval – emission measurements on vehicle using PEMS shall be carried out for data collection (CF CO, THC and NOx not for PM/PN)							CF factor tbd for 2023
IUPR _m	- (0.1)							OBD relevant, not applicable
Confidential								26 Oktober 2018 6

Legislative Requirements Boundary conditions in India Implications on Engine and Aftertreatment layout Technical trends

INDIA Climate Requirements

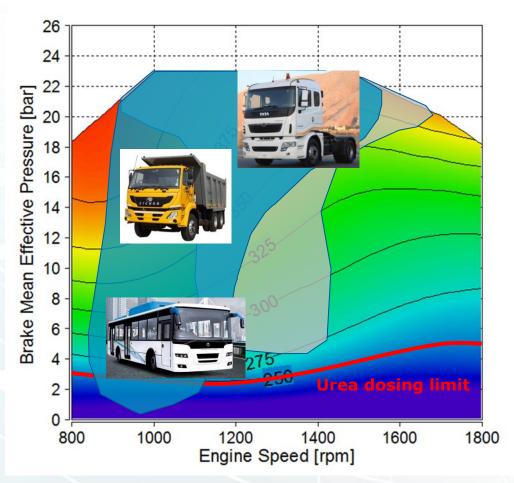
Proposed WNTE Requirements


Ambient conditions:


Altitude up to $\sim 1680m$ Temperature $\geq -7^{\circ}C$ Temperature $\leq 38^{\circ}C$ (at sea level)

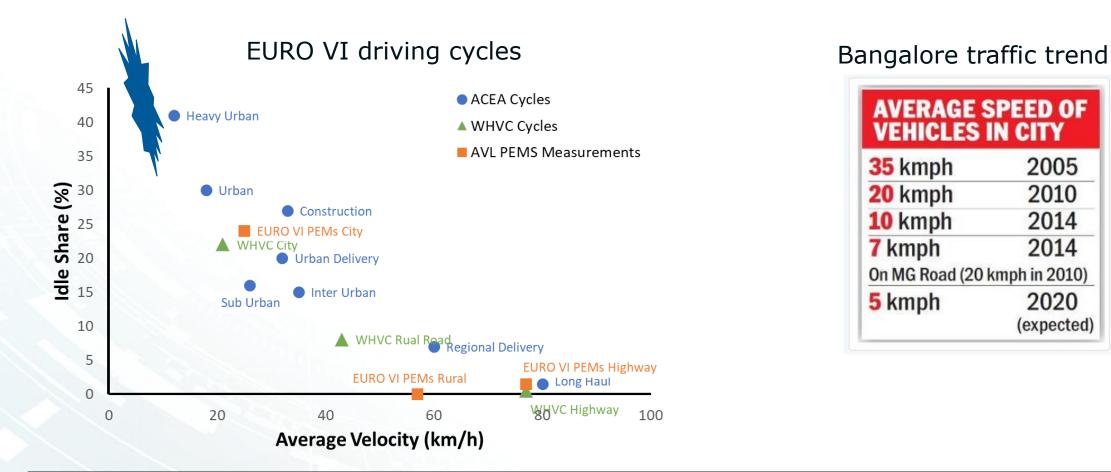
Requirement for demonstration: Part of certification Test bed data (3 grids)

AVL Climate test bed



Typical Indian Applications

Exhaust Temperature Map [°C]


Low heat rejection potential at high ambient temperatures and overload

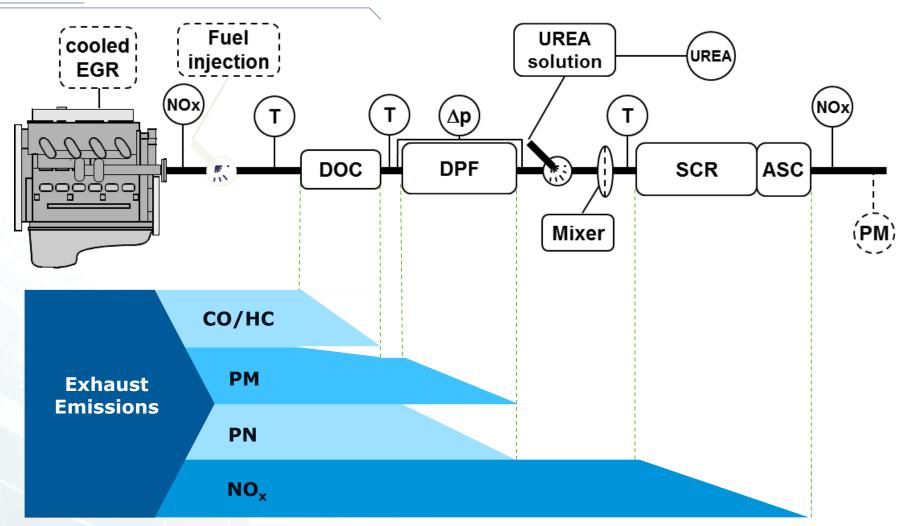
One engine to cover all applications and duty cycles

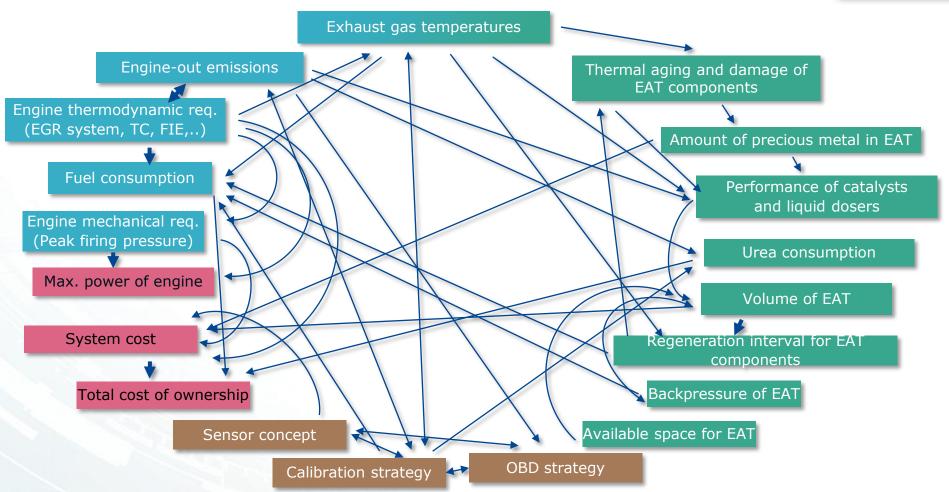
India service network

Considering temporary use of high sulfur fuels

Driving cycles

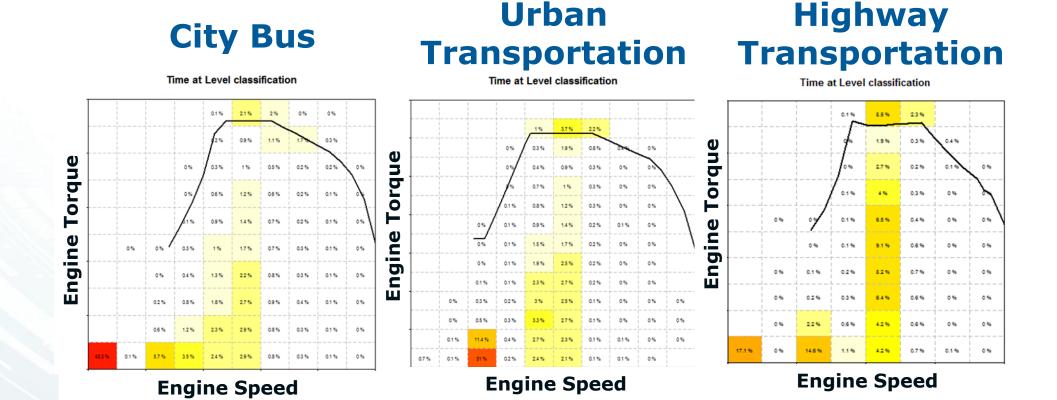
Traffic conditions in India differ from Europe. Therefore the boundary conditions for the EAS layout are significantly different between EURO VI and BS VI.




Legislative Requirements Boundary conditions in India Implications on Engine and Aftertreatment layout Technical trends

Overview of Emission reduction path in the exhaust system

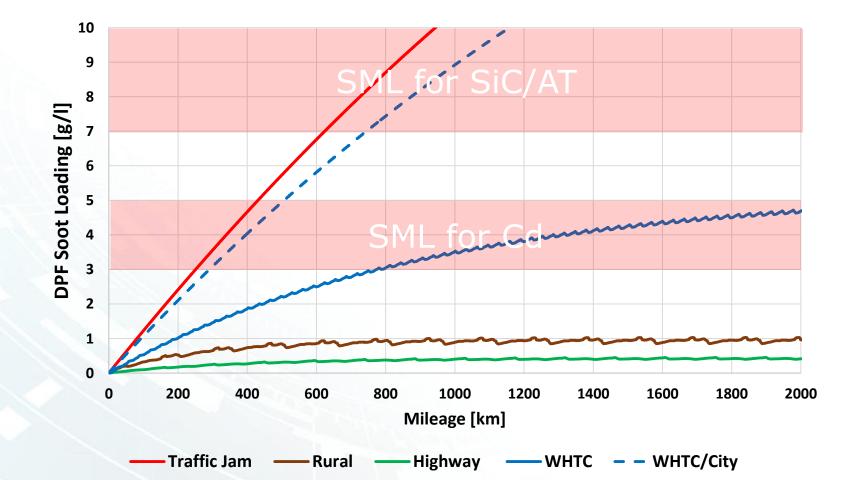
Mutual dependencies between Engine and EAS AVL Solver FOR BS VI application



A system approach is mandatory in order to find the optimum balance between conflicting targets. A separated optimization of engine and EAS leads to sub-optimal system results.

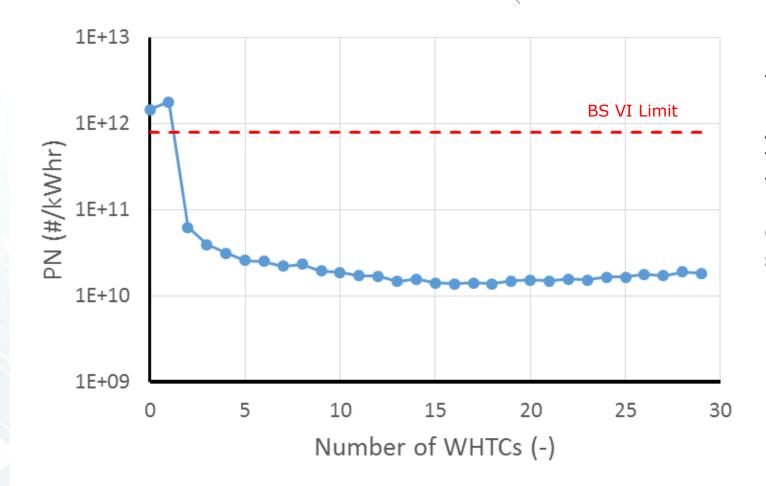
Confidential

Influence of Duty cycle on exhaust temperature



Exhaust Temperature in Duty Cycle

DPF soot loading of reference LCV engine in different load cycles


Strong dependency of DPF soot loading on driving profile.

DPF regeneration frequency has impact on:

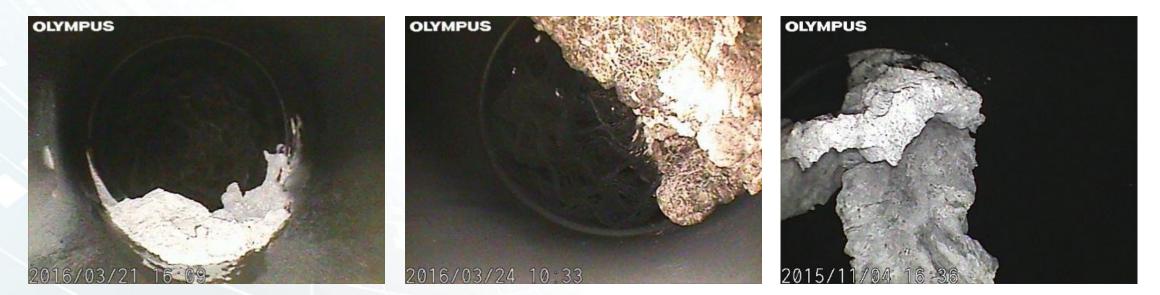
- Fuel consumption
- HC doser application
- Oil change interval
- Catalyst ageing
- DOC, DPF & SCR coating selection
- Urea deposit formation

DPF regeneration frequency at WHTC might differ significantly from target application.

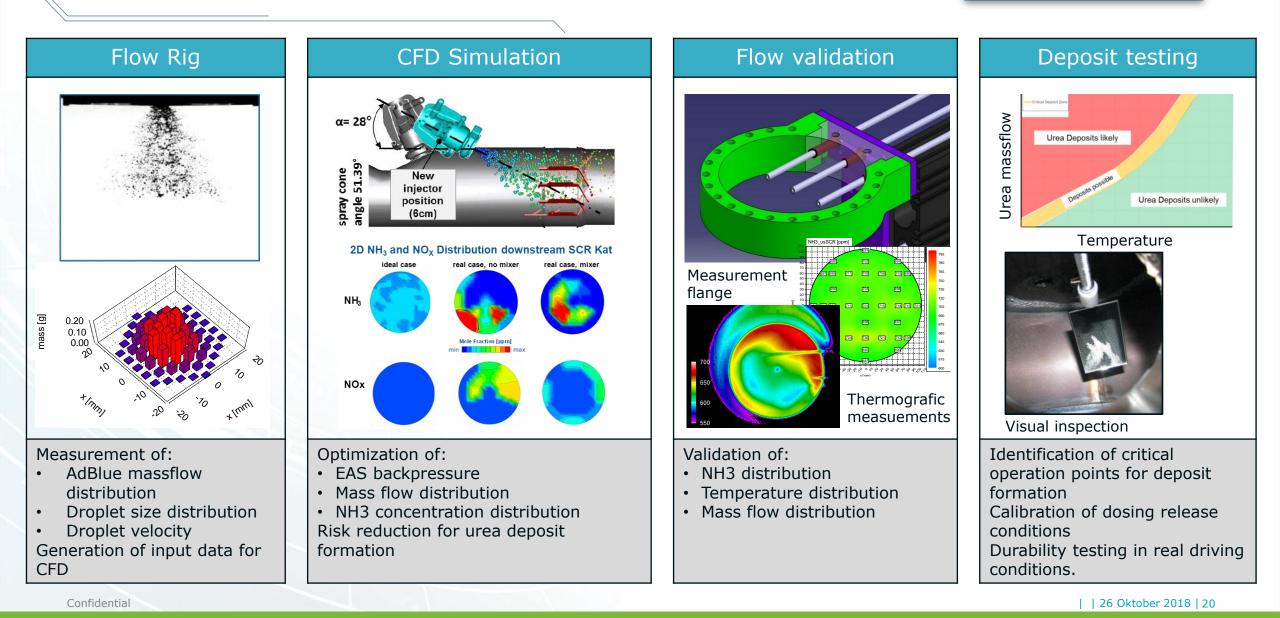
PN Number limit

DPF is mandatory for fulfilling PN targets.

Additionally sufficient soot loading on the DPF is required to achieve PN filtration efficiency.

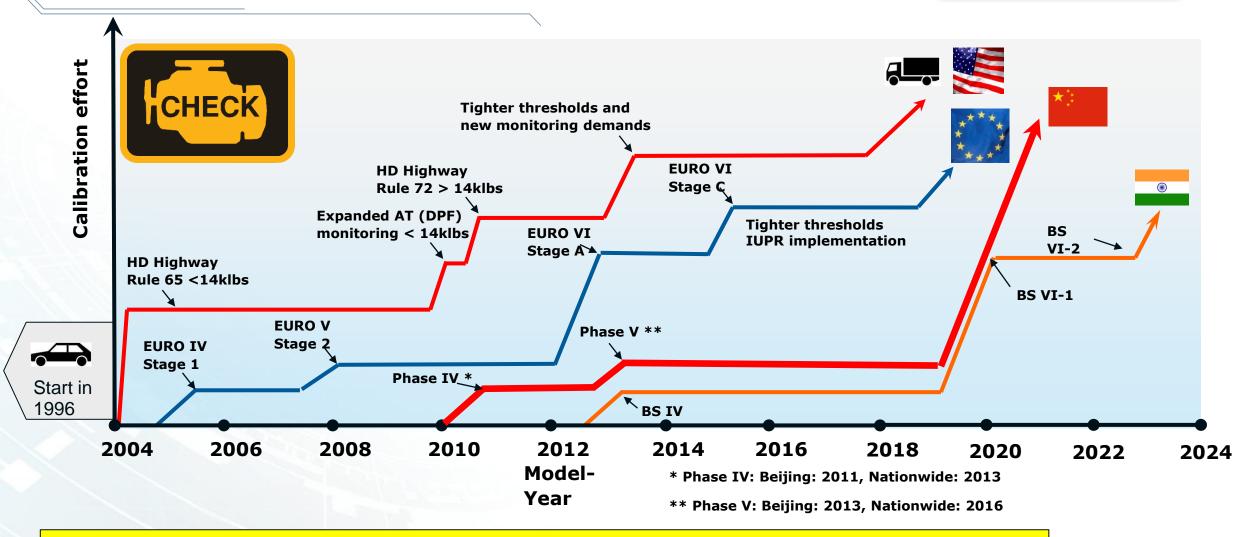

Open Crankcase ventilation requires specific blow-by oil separation

Urea Deposits


ISC requires reliable urea dosing also in city driving

- ISC (PEMS) and WNTE are significantly extending the areas in the engine map were urea dosing is required. -> Dosing start around 180°C is required
- Low exhaust temperatures are critical for deposit build
- Smart mixer design which avoid deposit build up are required
- Further engine thermal measures needs to be applied in order to avoid deposits

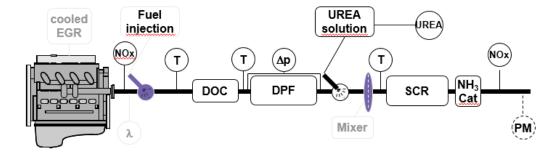
Optimization of NH₃ generation


EAS Emission validation overview 6 Pillars of EAS Performance validation

STEP 1	STEP 2	STEP 3	STEP 4	STEP 5	STEP 6
EAS System and Requirements definition	Synthesis Gas Bench Catalyst testing (fresh and aged)	EAS Hardware verification on test bed	EAS Hardware validation on test bed	EAS System performance prediction	Vehicle calibration validation and Fleet monitoring
 Target vehicles Fluids (fuel, AdBlue, oil) Markets User profiles Validation targets Aging conditions 	 Injector characterization 	 Functional test (e.g. ammonia UI) Legislative cycles DPF balance point 	 Low Load runs: Calibration Validation (e.g. DPF Soot loading models) EAS Failure modes: Urea deposits HC deposits Face plugging High Load runs: Calibration Validation EAS Failure modes: Thermal aging Chemical aging DF runs: DF rehearsal 	 Thermal Ageing Model Chemical Ageing Model Prediction of End-of-Life Emission Performance 	 Vehicle calibration validation testing Cold / high altitude trip Hot / high altitude trip Fleet Validation and failure mode reporting Frequent ISM / PEMS measurements

Historic Development in OBD Requirements

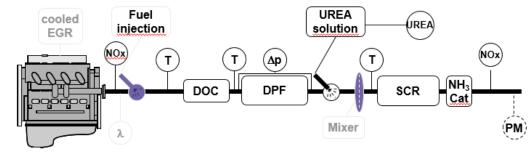
BS VI represents a big step in OBD requirements compared to BS IV



Legislative Requirements Boundary conditions in India Implications on Engine and Aftertreatment layout Technical trends

Emission strategies for BSVI

	STRATEGY I	STRATEGY II	STRATEGY III	STRATEGY IV	STRATEGY V
NOx reduction by	SCR only	SCR & EGR	SCR & EGR	SCR & EGR	EGR
PM / PN reduction by	DPF, passive Regeneration	DPF, passive Regeneration	DPF, passive Regeneration	DPF, passive Reg (DPF, active Regeneration)	DPF, active Regeneration



Diesel Price ↑ AdBlue Price ↓ NOxeo ↑

Emission strategies for BSVI

10.	STRATEGY I	STRATEGY II	STRATEGY III	STRATEGY IV	STRATEGY V
NOx reduction by	SCR only	SCR & EGR	SCR & EGR	SCR & EGR	EGR
		DPF, passive Regeneration	DPF, passive Regeneration	DPF, passive Reg (DPF, active Regeneration)	^{I.} DPF, active Regeneration
Required aft	rtreatment effic	iency [%] (wei	ghted hot + col	d) for	
NOx [%]			< 95	≤ 90	-
PM / PN [%]	~85 / > 99,9	~90 / > 99,9	~92 / > 99,9	~95 / > 99,9	~98 / > 99,9
Engine-out li	mit ²⁾ for: EU 6 N	Ox WHSC/WHT	C = 0,4 / 0,46 g	J/kWh	
NOx [g/kWł] 8.5	3.5 / 4.5	2.5 / 3.5	1.5 / 2.0	0.3 / 0.4
PM [g/kWh]	< 0.03	< 0.05	< 0.06	< 0.1	~ 0.2
	Challenges: • SCR eff. • applic. variety • temp. managem. • fluid consumpt. • emission durability	advanced SCR efficiency mandatory	main technology route with limited temp. management	conservative technology route w/o temp. management	Challenges: • heat reject. • fuel cons. • trans. NOx • turbocharg. • trans. performance • DPF limits

ηEATS **(>95%) €**EATS **(**

Less costly, more efficient emissions strategy for India

System engineering EAS integration

OEM should have full <u>control</u> of complete <u>system</u>, thus <u>includes</u> the <u>EAS</u> integration

- □ EURO VI / (DOC/DPF/SCR) accounts for <u>up 30% of engine cost</u>
- <u>"Off-The-Shelf" EAS</u> box restricts engine operation
- □ High knowledge of system interaction is required for smart EAS integration

Benefits of having full control of EAS

- □ <u>Cost</u> focusing product needs <u>optimization on system level</u> (engine + EAS)
- □ <u>CO2 reduction</u> takes place on system level
- Flexibility to source component (coating, substrate, dosing,...) from different suppliers (cherry picking)

AVL can take over role of EAS integrator to support OEM during BS VI ramp-up

- □ Highly experienced on <u>System Engineering</u>
- □ Special <u>EAS Test Facilities (e.g. Synthesis Gas Bench</u>)
- □ EAS <u>Software Controls</u> Development
- Experience with all suppliers

BS VI emission legislation

 \bigcirc

Solutions_available

0,00

AVL