

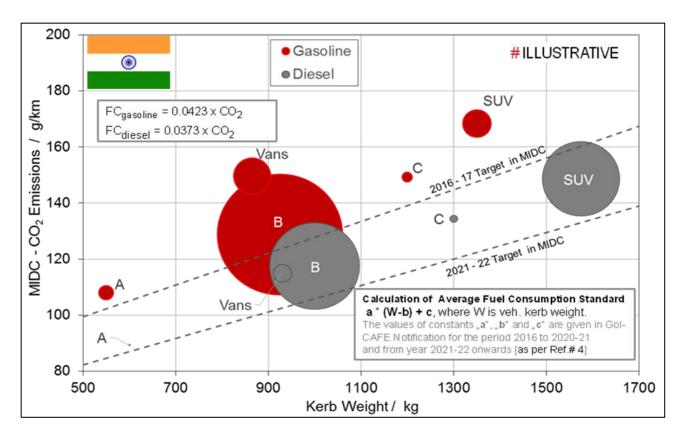
ECMA's 11th international Conference & Exhibition - 2018

DIESEL ENGINE EMISSION CONTROL CONCEPTS FOR ROBUST COMPLIANCE WITH INDIAN RDE LEGISLATION

Pune (India), 25th and 26th Oct. 2018

FEV Author's: O.P Bhardwaj, Th. Korfer, S. Arora, M. Panda

HJS Author's: C. Menne

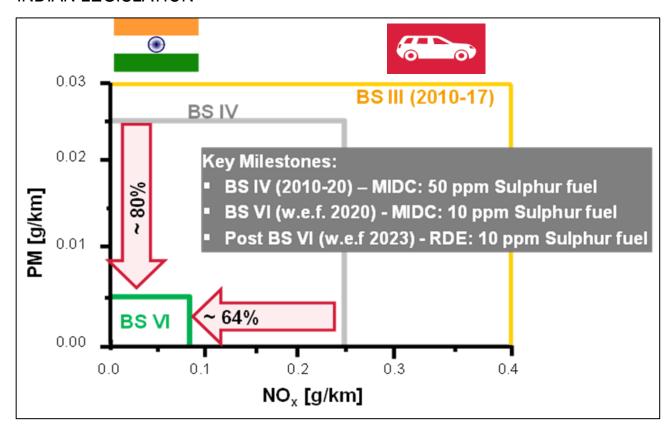


- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook

Introduction & Background

Diesel powertrains are 15 – 20% more efficient compared to gasoline powertrains, quite comparable to the situation in EU

- Figure shows the kerb weight dependent CO2 emission in the MIDC cycle for gasoline and Diesel PC applications
- Small PC segment is mainly dominated by Gasoline vehicles
- The heavier segment is mainly dominated by Diesel powertrains with the market share 80 90 %


^{*} Size of the bubble indicates the sales volume

Introduction & Background

INDIAN LEGISLATION

>>> Leapfrogging to the higher legislation is major driver for the technological upgradation in existing engines / powertrains

- The leap-frogging to BS VI will require > 80 % reduction in tailpipe PM mass emissions and ~ 64% reduction in tailpipe NOx emissions
 - 2020 : BS VI with MIDC certification
 - 2023 : BS VI with RDE (PEMS certification) Conformity
 Factors will become mandatory

- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook

Methodology & Approach

SUV APPLICATION

BEST PRACTICE

Test Set-up & Model
Validation

Vehicle

 SPORT UTILITY VEHICLE (SUV)
 UTILITY VEHICLE (UV)

Powertrain

2.0 L CLASS DIESEL ENGINE WITH MT6

Test Cycle

- MIDC:1930 KG
- WLTC (TMH):2150 KG
- RDE-IND: 2270 KG.
- RDE-95MOD: 2270 KG

EATS

UREASCR BASED SYSTEMS

Integrated Engine and EATS Optimization

Mean Value Engine Model Setup & Validation

Optimization Strategies

IMPACT OF WLTC & RDE DRIVING CYCLES
ON A BSVI (MIDC) COMPLIANT BASE
ENGINE

STRATEGY FOR OPTIMIZATION:

- ENGINE CALIBRATION
- MULTIPLE EGR SYSTEMS (HPE & LPE)
- EATS LAYOUT OPTIMIZATION

>> Optimized Engine Calibration (Air & Fuel Path) and EATS Strategy

Comparative Assessment of Different Emission Control Pathways

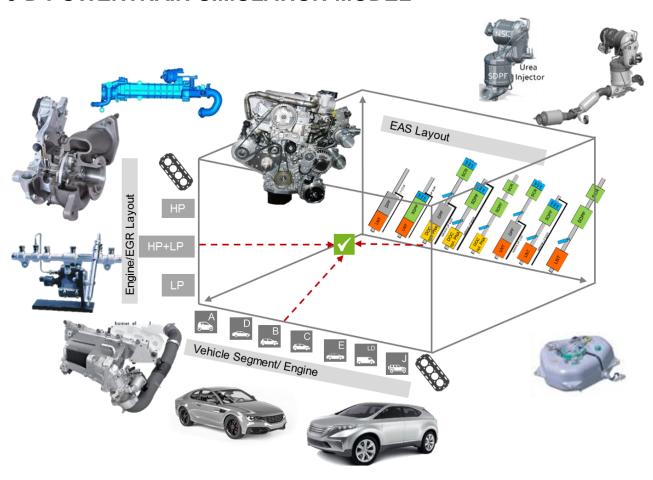
Comparision of Strategies

TAILPIPE NO_x

CONFORMITY FACTORS OF RDE

DPF REGEN.
INTERVAL

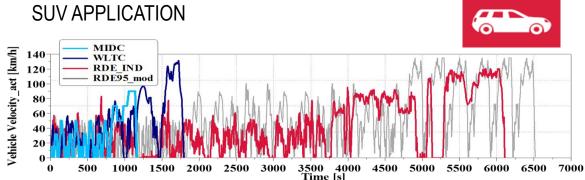
FUEL CONSUMPTION / CO₂

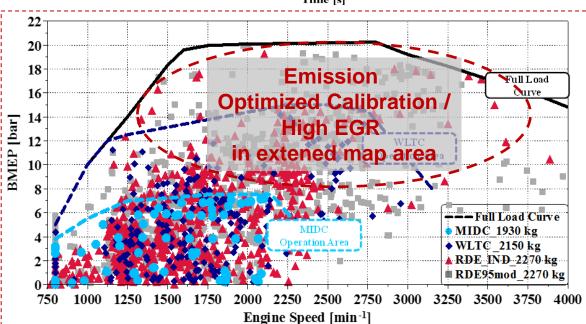

Robust Emission Compliance along with Efficient Operation in Real Driving Conditions

Methodology & Approach

0-D POWERTRAIN SIMULATION MODEL

- Nearly 800 different combinations are theoretically conceivable
- Detailed and comprehensive Emission Controls System analysis considering
 - Vehicle segment and characteristics
 - Engine features, Air system and EGR layout
 - After-treatment system configuration and specification
- Extension is possible, such as incorporation of 48V technology and HV-based hybridization




- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook

Test Cycles

- MIDC represents more of the stationary conditions with a high low load/low speed driving (with high idle phase) & WLTC is high transient with max. speed 130 kmph
- RDE-IND was generated by running the vehicle in a cosmopolitan city considering key regulatory requirements such as: <u>Altitude</u>, <u>Amb</u>. <u>T</u>, <u>Trip share</u>, <u>acceleration</u>, <u>av. speed</u>, <u>max speed</u> etc.
- The <u>specific cycle work (KJ/km)</u> comparision wrt MIDC (IWC:1930 kg):
 - WLTC (TM: 2150 kg): ~ 50 % higher
 - RDE –IN (TM: 2270 kg): ~ 60 % higher
 - RDE-95 mod (TM: 2270 kg): ~ 100 % higher (double)

Technical Strategies

Baseline Tests (with MIDC BS VI base calibration)

Engine Measures

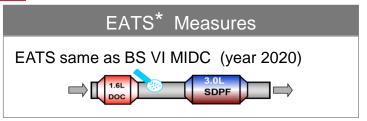
Impact of driving cycle (WLTC, RDE) on:

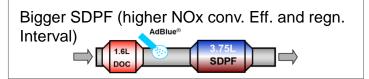
- NOx (raw and tailpipe) & C.F
- Soot Emissions / DPF Regn. Interval
- F.E / CO₂ emissions

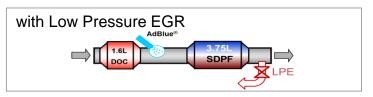
Case Study - A (step towards BS VI RDE)

Reducing the engine out NOx

- Extension of the HP EGR upto Full Load
- Enhanced EGR Cooler Capacity (~ 25%)


Case Study – B (step towards BS VI RDE)

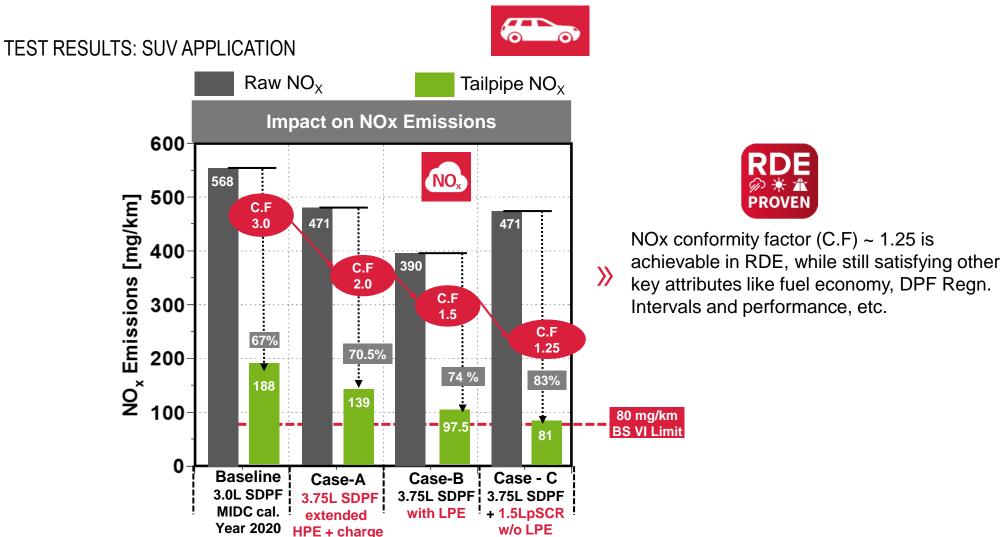

Further minimization of engine out NOx


- Implementation of cooled LP EGR
- Uncooled HP EGR

Case Study – C (step towards BS VI RDE) Engine calibration same as case study - A

Potential of elimintation of LP EGR system (Cost / Robustness)

Enhanced SCR functionality using the passive SCR (with single doser unit)


*EATS: Exhaust Gas Aftertreatment System

Note: the conversion perf. of EATS corresponds to ~ 160,000 kms aged system

Key Results – Indian Real Driving Cycle

cooling

Summary – Comparative Analyses of different path ways

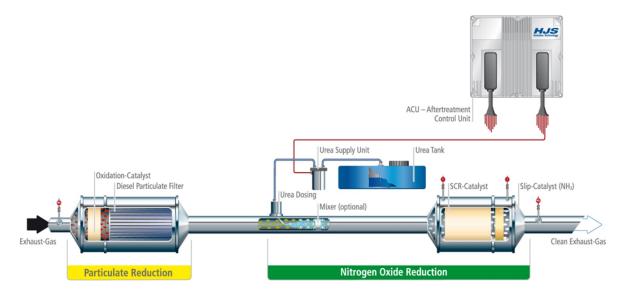
SUV APPLICATION

	Technology Measures / EATS	Low T	High T	NOx – C.F	CO2 / F.E	AdBlue	Sensitivity to Fuel Quality	Complexity / Robustness	System Costs
Case – A DOC+SDPF	AdBlue® 3.75L SDPF	+	+	-	+	+	0	++	++
Case – B DOC+SDPF	AdBlue® 3.75L SDPF LPE	+	+	+	++		-	-	
Case – C added pSCR	AdBlue® 3.75L DOC SDPF SCR	+	++	++	++	+	0	++	+

- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook

HJS's Capabilities Overview

HJS EXHAUST GAS TREATMENT TECHNOLOGY FOR MEETING EMISSION LEVELS IN INDIA



- HJS specialises in Sinter metal filter (SMF) to filter PM/PN
- Partial SMF filters from HJS are being used in the Indian market for BS IV applications
- Now, HJS brings you the closed SMF to meet BS VI emission legislation!

HJS System layout for typical heavy duty application

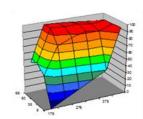
TECHNICAL SOLUTION FOR BS VI LEGISLATION REQUIREMENTS

DOC: for active and passive regeneration →increase of temperature by fuel dosing or/and measures

DPF: to achieve PN / PM requirements, coated to provide NO2/NOx ratio for SCR

• SCR: for NO_x reduction \rightarrow replace Va-cats by Cu-zeolites if active thermal regeneration is planned, slip catalyst

ACU: HJS Aftertreatment Control Unit Complex EATS monitoring & control for OBD II (up to 4,000 parameters)

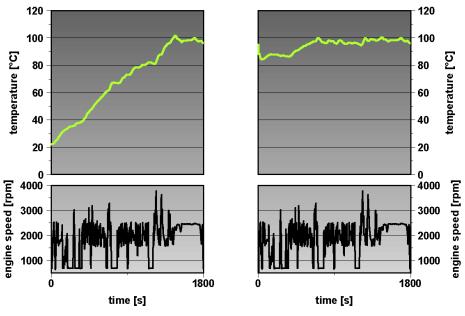


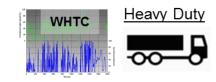
System set up for BS VI requirements, also available as stand alone solution!

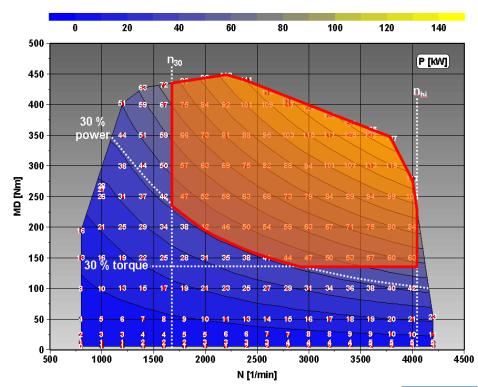
HJS's Capabilities Overview

SCR System Major Development Tasks HJS Facilities

SCR catalyst characterisation	- Catalyst test bench - Engine test bench		
Check of urea dosing system stability	Injection test benchComponent test bench		
Optimisation of urea injection	- CFD calculation - Component test bench		
Optimisation of ammonia distribution upstream SCR catalyst	- CFD calculation - Component test bench		
Analysis of deposit formation / secondary emissions	- Chemical lab		
Sensor layout and verification	test bench investigationsvehicle tests		
SCR dosing strategy development	- Rapid prototyping system		
SCR system calibration	- Off-line calibration - Steady-state & transient test bench - vehicle		
SCR system verification	- Vehicle chassis roller dyno tests - Vehicle on-road tests		


- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook


Heavy duty investigation



TEST CYCLE OVERVIEW - HEAVY DUTY

Heavy duty legislation

EMISSION LIMITS: WHTC/WHSC

EURO VI engine emission

Cycle	CO	THC	NMHC	CH ₄	NOx ⁽¹⁾	NH ₃	PM mass	PM number ⁽²⁾
Cycle			mg/kWh			ppm	mg/kWh	#/kWh
WHSC (CI)	1500	130			400	10	10	8 x 10 ¹¹
WHTC (CI)	4000	160			460	10	10	6 x 10 ¹¹
WHTC (PI)	4000		160	500	460	10	10	(3)

PI = positive ignition

weighted average from cold start test and hot start test

$$e = \frac{0.14 \cdot m_{cold} + 0.86 \cdot m_{hot}}{0.14 \cdot W_{act,cold} + 0.86 \cdot W_{act,hot}}$$

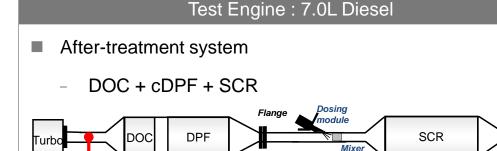
where

 $m_{cold} \ M_{hot} \ W_{act,cold} \ W_{act,hot}$

emission of cold start test, g/test emission of hot start test, g/test actual cycle work of cold start test, kWh actual cycle work of hot start test, kWh

CI = compression ignition

⁽¹⁾ The admissible level of NO₂ component in the NOx limit value may be defined at a later stage.


⁽²⁾ A new measurement procedure shall be introduced before 31 December 2012.

⁽³⁾ A particle number limit shall be introduced before 31 December 2012.

EATS Investigated layout

EAS SETUP: HEAVY DUTY APPLICATION

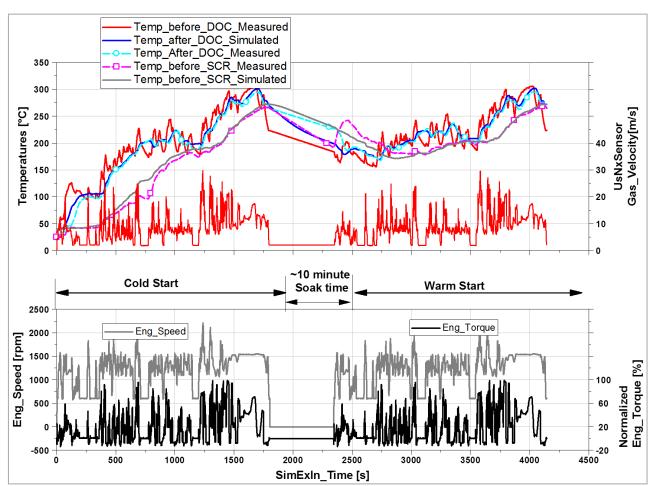
- Test Cycle : WHTC
- Catalyst Sizes

NO_x-Sensor

- DOC = 6.5 Lit.
- DPF = 12 Lit.
- SCR = 19.5 Lit.

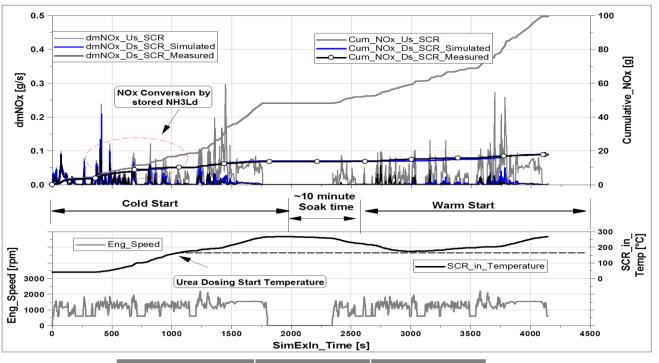
No_v

Sensor


- 7.0L class on Road HD Diesel was used for the investigations to meet BS VI legislation
- A classical SCR based EATS was investigated

Key Results – Temperature model validation

WHTC: BASE MODEL SETUP - EXHAUST TEMPERATURE VALIDATION


- SimEx temperature model was validated against measured WHTC temperature traces at different positions in the exhaust system.
- SimEx temperature profiles corresponds very well with the measured profiles at the engine test bench.
- The validated model results correspond well with the engine bench measurements

Key Results – NOx tailpipe validation

WHTC: VALIDATION OF NOX CONVERSION MODEL

Raw NOx g/kWh	Tp_NO _x g/kWh	η _{scr} %
Weighted	Weighted	90 F0/
3.52	0.36	89.5%

- The exhaust after treatment system was calibrated to meet the WHTC cycle emission legislation for NOx emissions (EU 6 Limit: 0.46 g/kWh).
- With an engineering target set at ~ 80% of the legal obligation the emission target, the set-up was calibrated to give Tail pipe NOx of ~ 0.36 g/kWh
- The simulated NOx emissions show a good correspondence w.r.t the measured tailpipe NOx traces

- Introduction and Background
- Methodology and Approach
- Results
 - Passenger Car
- HJS's Capabilities Overview
- Results
 - Heavy Duty Application
- Summary and Outlook

Summary and Outlook

- Diesel engines offer substantial potential concerning global CO2 reduction strategies while meeting stringent local air quality requirements worldwide
- Based on the passenger car optimized results, it could be concluded that a base BS VI MIDC engine can be upgraded for robust RDE compliance with C.F ≤ 1.25 (the final aim is to achieve C.F <1), while keeping the F.E / CO2 at lowest level.
- With regards to heavy duty application, It was demonstrated that FEV's powertrain simulation toolchain along with HJS's well engineered SCR based exhaust after-treatment systems could enable robust BSVI emission compliance.
- Thanks to the advanced, model-based, rule-governed and interlinked SW functionalities, as the key for maximal usage of individual emission control related sub-system capabilities (□ optimal system layout with lowest dev. costs & time)
- Depending upon the local conditions & application specific boundaries, a combination of several innovative technologies is possible to meet legal compliances and performance requirements

