

Johnson Matthey Inspiring science, enhancing life

"Cleaner IC Engines for Sustainable Environment With Innovative Emission Control Technologies (ECT 2019)"

ECMA's 12th International Conference ECT 2019 at Pune – November 14th, 2019

### **Emission Control for Gensets**

**Arthur J. Reining** 

Sr. Staff Scientist

## Stationary emissions control (SEC) for combustion sources

**Waste-to-Energy Plants** 





**Coal Power Plants** 



**Gas Turbines** 

Locomotives







Marine **Engines** 

**Digester Gas** 





**Gas Drilling &** Compression



Diesel / Gas **Generators** 



### Catalyst systems tailored to performance requirements







SCR and catalyst sizing/design



# SCR uses NH<sub>3</sub> as the reductant to remove NOx from lean exhaust Chemical reactions relevant to SCR in lean (excess O<sub>2</sub>) exhaust streams:

$$4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

standard SCR reaction (fast)

$$4 \text{ NH}_3 + 2 \text{ NO}_2 + 2 \text{ NO} \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

fast SCR (very fast)

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

undesired reaction (above 425°C)

note: there are other reaction pathways but the above reactions are dominant in lean exhaust

### Reaction stoichiometry: one molecule NH<sub>3</sub> reacts with one molecule of NOx

$$SO_2 + \frac{1}{2} O_2 \rightarrow SO_3$$
  
NH<sub>3</sub> + SO<sub>3</sub> + H<sub>2</sub>O  $\rightarrow$  NH<sub>4</sub>HSO<sub>4</sub>

oxidation of sulfur formation of ammonium bisulfate, fouls catalyst and equipment

These reactions are not usually a concern for ULSD and NG engines

Urea often used as NH<sub>3</sub> source because it is easier to handle/store than NH<sub>3</sub>

One molecule of urea decomposes into two moles of NH<sub>3</sub>:  $(NH_2)_2CO + H_2O \rightarrow 2 NH_3 + CO_2$ urea



### SCR relies on NH<sub>3</sub> reductant which is also regulated

### Catalyst sizing and operating parameters are critical

### **ANR < 1**

Low NH<sub>3</sub> slip, Low NOx conversion

### **ANR > 1**

High NOx conversion, High NH<sub>3</sub> slip

#### At ANR = 1.0

100% conversion, zero slip possible with:

- large catalyst volume
- perfect mixing, flow distribution





### Oxidation catalysts

Oxidation catalysts (2-way) also referred to as DOC (Diesel Oxidation Catalysts)

TWC (3-way)
Simultaneous conversion of HC, CO and NOx under stoic/rich burn operation



### Flow-through emission control catalysts



- To maximize surface area, particles are highly dispersed on high surface area supports
- Much like a sponge, the majority of the catalytic surface area exists in pores and channels



Catalytic material is coated onto metallic and ceramic substrates to produce flow-through emission control catalysts



Metallic and ceramic substrates





### Oxidation catalysts (Pt, Pd, base-metals)

## Lean exhaust (engines, turbines, industrial processes) CO, VOC, HC conversions

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
  
 $HC/VOC + O_2 \rightarrow CO_2 + H_2O$ 



Increasing Temperature >>>>

Highly stable molecules such as methane, ethane, propane and butane require high temperature to light off

Less stable, reactive molecules such as CO, formaldehyde, ethylene and propylene light off a much lower temperatures



## Catalyst deactivation modes

| mechanism        | description                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------|
| poisoning        | strong chemisorption of species on catalytic sites, sites blocked for catalytic reaction          |
| fouling, masking | physical deposition of species on the catalytic sites and in pores of catalyst blocking the sites |
| thermal          | loss of catalytic surface area, support area and catalyst-<br>support interactions                |
| vapor formation  | reaction of gas phase component with catalyst material to produce volatile compound               |
| attrition        | loss of catalytic material via abrasion, mechanical disruption of the catalyst structure          |

most relevant for NG, diesel engines and NG turbines





## Continuously Regenerating Trap (CRT®) technology

Diesel particulate filter (DPF) technology to control diesel particulate matter (PM), CO, HC

Diesel exhaust: NOx (mostly NO) CO VOC soot (PM)



CRT® for on road or off road HDD vehicle









### CRT® technology (Continuously Regenerating Trap)

- Operating principles: filtration + passive regeneration
- Wall-flow filter:
  - Channels open on inlet side are closed on outlet side
  - Exhaust is forced through walls
  - PM is trapped in the walls







Low profile CRT-2 for stationary engine

DPF inlet side is coated with soot, outlet side is clean



### Temperatures at which NO<sub>2</sub> and O<sub>2</sub> react with soot



Typical diesel engine temperatures are not high enough for  $O_2$  in the exhaust to react with soot and regenerate the filter

NO<sub>2</sub> reacts with soot at much lower temperatures

Majority of engine NOx typically composed of NO, not NO<sub>2</sub>

NO does not react with soot

Oxidation catalyst used with filter to achieve passive regen at lower temps



## CRT® technology: Passive regeneration

Regeneration: rate of soot consumption > rate at which soot enters the filter

### Critical reactions are NO to NO<sub>2</sub> over the DOC and NO<sub>2</sub> + soot in the filter





### Passive regeneration dependent upon both temperature and NOx:PM

**Temperature** – as with any chemical reaction, temperature must be sufficient for reaction

Lab reactor studies show NO<sub>2</sub>+ soot begins ≈ 300°C

NOx:PM Ratio - must also be high enough for passive regeneration to occur

- PM in exhaust continually enters filter and is trapped in walls
- Sufficient NOx must be present so that rate of soot consumption exceeds the rate at which soot enters the filter

### Challenges of using a DPF/CRT® on backup gensets:

- No defined duty cycle
  - Back-up gensets are only used periodically (i.e. power outage)
  - Gensets are "exercised" at idle or low load
    - Idle/low load exhaust temperatures and NOx:PM ratio are too low for passive regen

If passive regen does not occur, filter can plug with soot resulting in excessive backpressure on engine



## Effect of sulfur on CRT® operation

Diesel fuels contain sulfur compounds

During combustion, the sulfur is oxidized to SO<sub>2</sub>, and some fraction to SO<sub>3</sub>

SO<sub>3</sub> is a catalyst poison

If DOC is poisoned the NO → NO<sub>2</sub> reaction will be inhibited resulting in insufficient NO<sub>2</sub> to consume the soot in the filter

In the presence of water:  $SO_3 \rightarrow H_2SO_4$  (sulfuric acid)

- H<sub>2</sub>SO<sub>4</sub> will adsorb to the soot, adding to its mass
- Typical conversion requirement 85% mass

### Fuel sulfur level is critical desired PM reduction





World Leader in Emission Control Technologies

Mobile on-highway, off road, heavy duty (HHP) and stationary (including locomotive and marine)



