ECMA 11th International Conference & Exhibition - 2018, Pune, India, Oct. 25-26, 2018

Advanced Catalyst Systems for HDD On-Road BS VI and Off-Road Trem IV

Weiyong Tang, Ph.D.

Mobile Emissions Catalysts Asia Pacific

BASF Provides Broad Catalyst Products to Help Reduce Pollutions

Reduce ground-level ozone
Reduce evaporative emissions

Agenda

- Regulation review and market trend
- System design and validation for BS VI HDD on-road
- Aftertreatment pathways for Trem IV off-road
- Summary

Regulation Comparison

	★**	★*	**	۲	*** * * * * *
	HDD (g/kwh)				
Norm	NS V	NS Vla	NS VIb	BS VI	EU VI
CO	4.0	4.0	4.0	4.0	4.0
HC	0.55	0.16	0.16	0.16	0.16
NO _x	2	0.46	0.46	0.46	0.46
NH ₃	25ppm	10ppm	10ppm	10ppm	10ppm
РМ	0.03	0.01	0.01	0.01	0.01
PN	_	6x10 ¹¹	6x10 ¹¹	6x10 ¹¹	6x10 ¹¹
Cycle	ETC	WHTC	WHTC	WHTC	WHTC

Same between India and China as Europe

Norm	NS IV	Trem IV	US T4F	EU IV	EU V
CO	5.0	5.0	5.0	5.0	5.0
HC	0.19	0.19	0.19	0.19	0.19
NO _x	3.3	0.4	0.4	0.4	0.4
PM	0.025	0.025	0.02	0.025	0.015
PN	5x10 ¹²	-	_	_	1x10 ¹²
Cycle	NRTC	NRTC	NRTC	NRTC	NRTC

Variations seen between India and China

BASE

<56kw EU IIIB, >56kw EU IV

Market Trend

HDD

- US: ULNOx is likely moving forward with implementation target of 2023
- EU: EU VI D focus on ISC (in-service conformality) and EU VII under discussion
 - Market sees a mixture of Vanadia and zeolite SCR systems
- China: Vanadia SCR in Stage IV and V and Cu-zeolite SCR system in Stage VI

Off-Road

- US: EPA Tier 4F no PN requirement, exploratory SCRoF development
- EU: SCRoF system for meeting Europe off-road Stage V in 2019
- China: Split into DPF solutions for smaller displacement and SCR solutions for larger displacement

Aftertreatment Systems for India and China

- Europe (SCR route)
 - DOC and V-SCR in Y2005
 - DOC-DPF-SCR started 2013
 - Non-EGR high efficiency SCR

- United States (EGR route)
 - DPF in 2007 and 2011
 - DOC-DPF-SCR started 2010
 - Volume reduction, higher E/O, N_2O

Key design consideration (for India and China):

- How much should the E/O BSNOx be? EGR vs. Non-EGR
- How should the soot in DPF be regenerated? Active vs. Passive
- What type of SCR catalyst should be used? *Cu vs. V*

Cu-Zeolite vs. Vanadia SCR

Matthew Henry of Cummins at the SAE 2016 Heavy-Duty Diesel Emissions Control Symposium Gothenburg

Catalyst Type	Active Component	Low Temp Activity	High Temp Stability	HC Impact	Sulfur Effect
V-W-Ti	V_2O_5	0		0	+
Zeolite	Fe	-	+	-	-
Zeolite	Cu	++	++	+	-

DOC Design and Validation

DOC inlet temperature and space velocity are two key design factors

Analysis of 400h

engine aged part

🗆 • BASE

We create chemistry

- Unable to L/O
- Stable L/O (w/ high HC slip)
- Stable L/O (w/ medium HC slip)
- Stable L/O (w/ low HC slip)

System Design and Validation

Typical design

- SCR to engine displacement ratio: 1.8-2.5
- DOC PGM loading: 20-35g/ft³
- CSF PGM loading: 3-5g/ft³

System Endurance and Robustness

No measurable loss of system NOx conversion capability after 100h continuous WHTC engine runs

Sequence	Description		Sequence	Cycle cumulative NOx conversion result
Step 1	Evaluate system performance using 10ppm S fuel		Step 1	94.6% (ca. 0.32 on cycle average SCR in NO ₂ /NOx)
Step 2	Switch to 395ppm S fuel, run transient cycle for 28h, with performance measurements in the beginning middle and end of it followed by active		Step 2	90.4% \rightarrow 61.4% (@14h) \rightarrow 38.2% (@28h) \rightarrow 90.6% (after the 500°C regen event)
regenerate event and system performance evaluation	regenerate event and system performance evaluation		Step 3	90.4% \rightarrow 64.4% (@14h) \rightarrow 37.7% (@28h) \rightarrow 90.8% (after the 500°C regen event)
Step 3	Continue 395ppm S fuel, ditto step 2, also for 28h		Step 4	89.1% \rightarrow 66.4% (@12.5h) \rightarrow 41.2% (@25h) \rightarrow 90.4% (after the 550°C regen event)
Step 4	Continue 395ppm S fuel, ditto step 2, for 25h Continue 395ppm S fuel, ditto step 2, for 28h		Stop 5	90.6% $(0.1%)$ $(0.1%)$ $(0.1%)$ $(0.2%)$ $(0.2%)$ $(0.2%)$ (ofter the E00% regard event)
Step 5			Step 5	$03.0\% \rightarrow 03.4\%$ (@ 141) $\rightarrow 30.2\%$ (@ 201) $\rightarrow 03.5\%$ (and the 500 C regenerenc)
Step 6	Switch back to 10ppm S fuel, system performance evaluation before active regenerate event followed by another performance check		Step 6	$90.0\% \rightarrow 93.1\%$ (after the 500°C regen event) (ca. 0.24 on cycle average SCR in NO_2/NOx)

Simulation experiment of fuel quality impact: system can recovery from refilling with high sulfur fuel

EU6 System Durability Experience

13L HHDD

BASF We create chemistry

BASF Cu-SCR Pipeline

NOx Conversion* 94% 5% 89%

Testing w/ 1000 ppm NO, NSR=1, 120k SV

Off-Road Challenges

- Tier 4 (a & b) further classified into 6 engine families (ranging between $11 < hp \le 750$) with different emission limits
- U.S. Off-road sector includes
 - 60 engine manufacturers
 - 600 equipment manufacturers
 - 6,000 different engine models
- Most OEMs not experienced in emissions after treatment
- Packaging and operator 360° visibility constraints
- Full useful life of 8,000 hours or 10 years simulation undefined

Similar challenges are anticipated for India Trem IV off-road ATS development

Trem IV Aftertreatment Roadmap

Trem IV Off-Road Product Strategy

Design Consideration

- Most likely splitting into EGR and non-EGR engines
- ATS design
 - Compared to SCR, CSF/PFC is the preferable solution for smaller displacement engines
 - For larger displacement, SCR solution is more suitable to achieve a better TCO
- Technology maturity level and system cost are two key factors to most OEMs

BASF Offering

- EGR route
 - DOC+CSF // DOC+POC
 - SOF reduction DOC
 - On-road DOC for fuel L/O and NO₂-make
 - Zoned CSF (DOC on filter)
 - Co-development opportunity
- SCR route
 - Cu-SCR
 - Robustness demonstrated
 - Cu-SCRoF
 - In launch for EU Stage V application
 - Regional prototype capability
 - V-SCR
 - Improved low temperature deNO_x

An Example: SOF Reduction DOC for Off-Road

We create chemistry

Summary

- Both India and China follow Europe on HDD on-road regulations
 - Variations are seen in the off-road Stage IV standard (aka PN)
- Proven US 2010 / EU VI catalyst technologies are strongly recommended
- System design and validation should consider unique market application
 - Low temperature operation, uneven fuel quality, etc.
- New Cu-SCR technology provides cost reduction opportunity in the future
- Off-road Term IV will likely see split between EGR and SCR solutions
 - 56-75kw is the broadline for the split

BASE We create chemistry