









## ECT 2018 Technologies & Solutions for upcoming Off Highway

ECT 2018, Pune, October 25<sup>th</sup>, 2018

Dr Alain Ristori





- Umicore short introduction
- Global NRMM technical trend Worldwide
- Main challenges for India
- Legislation update and system layouts for India

# Who we are

#### A global materials technology and recycling group





One of three global leaders in emission control catalysts for light-duty and heavy-duty vehicles and for all fuel types



A leading supplier of key materials for rechargeable batteries used in electrified transportation and portable electronics



The world's leading recycler of complex waste streams containing precious and other valuable metals

# Unique position in clean mobility materials





# Investing in Umicore AC's future



In 2017: Acquisition of catalyst business of Haldor Topsoe for €120M

Corrugated SCR technology, strong HDD presence @ Scania and China market





@ competitive performance & cost





US Tier IVf

- Europe Stage V
- China Stage IV
- India CEV/TREM IV/V

V / Cu / Fe SCR, no particulate number limit => DPF not mandatory V / Cu / Fe SCR, Soot filter is mandatory, SCR on filter is an option Cu / Fe SCR, Soot filter is mandatory. Use of V SCR will be regulated V / Cu / Fe? SCR, is SCR on filter an option?

#### **Incredible India** Why is India a unique market?

One of the coldest place in the world with temperature down to -45°C...

nt recovered below 200°C. Min





... but also one of the hottest in the world with temperature up to +50°C in Rajasthan ...

Acop.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | IS 1459                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>No | Characteristics                                                                      |
| and the second s | (i)      | Acidity, inorganic                                                                   |
| ACCHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ii)     | Burning quality<br>a) Char value, mg/kg of oil consumed<br>b) Bloom on glass chimney |
| USENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (iii)    | Colour (Saybolt)*, Min                                                               |
| 1810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (iv)     | Copper strip corrosion for 3hr at 50°c                                               |
| रासान 💠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (v)      | Distillation                                                                         |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | a) Percent recovered below 200°C, M                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | b) Final boiling point °C Max                                                        |
| Appendit in an and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (vi)     | Flash point (Abel)°C, Min                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (vii)    | Smoke point, mm, Min                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (viii)   | Total Sulphur, percent by mass, Max                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                      |

| IS 1459 : 1974 (2 <sup>nd</sup> Revision) with Amendment (No 1 thru 3) |                            |             |  |  |
|------------------------------------------------------------------------|----------------------------|-------------|--|--|
| Characteristics                                                        | Requirement                | Metho<br>IS |  |  |
| norganic                                                               | Nil                        |             |  |  |
| quality<br>/alue, mg/kg of oil consumed, Max<br>. on glass chimney     | 20<br>Not darker than grey |             |  |  |
| Saybolt)*, Min                                                         | *10                        |             |  |  |
| trip corrosion for 3hr at 50°c                                         | Not worse than No. 1       |             |  |  |

20

35

18\*\*

0.25

Superior Kerosene Oil / Kero IndianOil Kerosine meets the requirements of





Lubricant quality?



#### Incredible India Why is India a unique market?

With very unique in use conditions...







| Expected Systems         |                                                                                                            |                     |                                                         |                                                 |                                                  |                                                                              |                                                                                                                             |                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Bharat Stage CEV/TREM IV |                                                                                                            |                     |                                                         |                                                 |                                                  |                                                                              |                                                                                                                             |                                 |
|                          | Power<br>(kW)                                                                                              | Start               | CO<br>(g/kWh)                                           | HC<br>(g/kWh)                                   | NOx<br>(g/kWh)                                   | PM<br>(g/kWh)                                                                | PN<br>(#/kWh)                                                                                                               | Test Cycle                      |
|                          | 37 ≤ P < 56                                                                                                | Oct. 2020           | 5.0                                                     | 4.                                              | 7                                                | DOC (+DPF)                                                                   | ·                                                                                                                           | NRSC &                          |
|                          | 56 ≤ P < 130                                                                                               |                     | 5.0                                                     | 0.19                                            | 0.4                                              |                                                                              |                                                                                                                             | NRTC                            |
|                          | 130 ≤ P < 560                                                                                              |                     | 3.5                                                     | 0.19                                            | 0.4                                              | 0.025                                                                        |                                                                                                                             |                                 |
| Bharat Stage CEV/TREM V  |                                                                                                            |                     |                                                         |                                                 |                                                  |                                                                              |                                                                                                                             |                                 |
| _                        |                                                                                                            | 1                   |                                                         |                                                 |                                                  |                                                                              |                                                                                                                             |                                 |
|                          | Power<br>(kW)                                                                                              | Start               | CO<br>(g/kWh)                                           | HC<br>(g/kWh)                                   | NOx<br>(g/kWh)                                   | PM<br>(g/kWh)                                                                | PN<br>(#/kWh)                                                                                                               | Test Cycle                      |
|                          | <b>Power</b><br>(kW)<br>P < 8                                                                              | Start<br>April 2024 | <b>CO</b><br>(g/kWh)<br>8.0                             | HC<br>(g/kWh)<br>7.                             | NOx<br>(g/kWh)                                   | PM<br>(g/kWh)                                                                | PN<br>(#/kWh)                                                                                                               | Test Cycle NRSC                 |
|                          | Power<br>(kW)<br>P < 8<br>8 ≤P < 19                                                                        | Start<br>April 2024 | CO<br>(g/kWh)<br>8.0<br>6.6                             | HC<br>(g/kWh)<br>7.<br>7.                       | NOx<br>(g/kWh)<br>5<br>5                         | PM<br>(g/kWh)                                                                | PN<br>(#/kWh)                                                                                                               | Test Cycle                      |
|                          | Power<br>(kW)<br>P < 8<br>8 ≤P < 19<br>19 ≤P < 37                                                          | Start<br>April 2024 | CO<br>(g/kWh)<br>8.0<br>6.6<br>5.0                      | HC<br>(g/kWh)<br>7.<br>7.<br>4.                 | NOx<br>(g/kWh)<br>5<br>5<br>7                    | PM<br>(g/kWh)<br>No EATS                                                     | PN<br>(#/kWh)<br><br>1×10 <sup>12</sup>                                                                                     | Test Cycle NRSC NRSC/NRTC       |
|                          | Power<br>(kW)<br>P < 8<br>8 ≤P < 19<br>19 ≤P < 37<br>37 ≤ P < 56                                           | Start<br>April 2024 | CO<br>(g/kWh)<br>8.0<br>6.6<br>5.0<br>5.0               | HC<br>(g/kWh)<br>7.<br>7.<br>4.<br>4.           | NOx<br>(g/kWh)<br>5<br>5<br>7<br>7               | PM<br>(g/kWh)<br>No EATS<br>0.4<br>DOC + DPF<br>0.015                        | PN<br>(#/kWh)                                                                                                               | Test Cycle<br>NRSC<br>NRSC/NRTC |
|                          | Power<br>(kW)<br>P < 8<br>8 ≤P < 19<br>19 ≤P < 37<br>37 ≤ P < 56<br>56 ≤ P < 130                           | Start<br>April 2024 | CO<br>(g/kWh)<br>8.0<br>6.6<br>5.0<br>5.0<br>5.0        | HC<br>(g/kWh)<br>7.<br>7.<br>4.<br>4.<br>0.19   | NOx<br>(g/kWh)<br>5<br>7<br>7<br>7<br>0.4        | PM<br>(g/kWh)<br>0 4<br>No EATS<br>0.4<br>DOC + DPF<br>0.015<br>0.04<br>SCRT | PN<br>(#/kWh)<br>1×10 <sup>12</sup><br>1×10 <sup>12</sup><br>1×10 <sup>12</sup>                                             | Test Cycle<br>NRSC<br>NRSC/NRTC |
|                          | Power       (kW) $P < 8$ $8 \le P < 19$ $19 \le P < 37$ $37 \le P < 56$ $56 \le P < 130$ $130 \le P < 560$ | Start<br>April 2024 | CO<br>(g/kWh)<br>8.0<br>6.6<br>5.0<br>5.0<br>5.0<br>3.5 | HC<br>(g/kWh)<br>7.<br>7.<br>4.<br>0.19<br>0.19 | NOx<br>(g/kWh)<br>5<br>7<br>7<br>7<br>0.4<br>0.4 | PM<br>(g/kWh)<br>No EATS<br>0.4<br>DOC + DPF<br>0.015<br>SCRT<br>0.015       | PN<br>(#/kWh)<br>1*10 <sup>12</sup><br>1×10 <sup>12</sup><br>1×10 <sup>12</sup><br>1×10 <sup>12</sup><br>1×10 <sup>12</sup> | Test Cycle<br>NRSC<br>NRSC/NRTC |



### Bharat Stage CEV/TREM IV (October 2020) Overall very much comparable to Tier IVf/Stage IV

| Engine power(kW)                                                                                        | Technical Routes                | DPF Reg.         | Comment       |
|---------------------------------------------------------------------------------------------------------|---------------------------------|------------------|---------------|
|                                                                                                         |                                 | CRT+Standstill   | with HC doser |
| 37 <p<56< td=""><td>Non CR, EGR, DOC+CDFF</td><td>Active Reg.</td><td>with HC doser</td></p<56<>        | Non CR, EGR, DOC+CDFF           | Active Reg.      | with HC doser |
|                                                                                                         | CR, EGR, DOC (+partial filter?) | CRT              | Mainstream ?  |
|                                                                                                         |                                 | CRT+Standstill   | with HC doser |
| 56 <p<560< td=""><td>NOT CR, W/ OF W/O EGR+SCRT</td><td>Active Reg.</td><td>with HC doser</td></p<560<> | NOT CR, W/ OF W/O EGR+SCRT      | Active Reg.      | with HC doser |
|                                                                                                         | CR, w/o EGR, (DOC)+SCR          | No filter needed |               |

The ATS will be depending on the engine development stage

- The OEM can chose to develop a new engine with common rail system
- The OEM may also chose to stay with a mechanical pump

# Bharat Stage CEV/TREM V (April 2024)



Overall very much comparable to Stage V

| Engine power(kW)                                                                                 | Technical Routes       | DPF Reg.         | Comment       |
|--------------------------------------------------------------------------------------------------|------------------------|------------------|---------------|
|                                                                                                  |                        | CRT+Standstill   | with HC doser |
| 19 <p<56< td=""><td>Non CR, EGR, DOC+CDFF</td><td>Active Reg.</td><td>with HC doser</td></p<56<> | Non CR, EGR, DOC+CDFF  | Active Reg.      | with HC doser |
|                                                                                                  | CR, EGR, DOC+cDPF      | Active Reg.      | Mainstream ?  |
|                                                                                                  |                        | CRT+Standstill   |               |
| 50 <f<500< td=""><td>CR, W/ 01 W/0 EGR+SCR1</td><td>Active Reg.</td><td></td></f<500<>           | CR, W/ 01 W/0 EGR+SCR1 | Active Reg.      |               |
| P>560                                                                                            | CR, w/o EGR, (DOC)+SCR | No filter needed |               |

- The introduction of the particulate number limit requires the use of a Diesel Particulate Filter for all engines with a power comprised between 19kW and 560kW
- For non CR engines with a power comprised between 37 to 56kw, the same ATS layout with filter can be reused from TREM IV development

#### Tractor market analysis How will the market react to TREM IV/V introduction?

< 20HP

21HP-30HP31HP-40HP

■ 41HP-50HP

■ 50HP+





FY'2017-18

- Based on today market, only 7% of tractors will require an After Treatment System from October 2020
- Most probably the 50HP+ market will even drop because of TREM IV introduction
  - In April 2024, with the introduction of TREM V, more than 90% of the tractor market will be equipped with an ATS system

Source: ICRA Research



FY'2017-18

#### System layout for CEV/TREM V

What is the best system layout for 75HP+ applications?

SCRT

- Well proven for US2010, EuroVI & TierIVf
- b High CRT efficiency

DPF

- Active Regeneration applicable w/o major restrictions
- High packaging volume

#### DDPF

Volume saving potential 10-15%

1 brick less to can

DDPF

- Very limited active regen capability
- Slightly compromised CRT efficiency

#### SDPF

- Volume saving potential 15-20%
- Improved cold start De-NOx activity
- Potentially 1 brick less to can
- Significantly reduced CRT efficiency
- Still not field proven



SDPF SCR

# System layout review for CEV/TREM IV/V









- The TREM/CEV IV introduction will be a good opportunity to learn about ATS for off highway applications in India...
- ...even if the real challenge is coming with the TREM/CEV V introduction
- All the catalyst technologies are available and approved in US, Europe and China...
- ... and can be adapted to the special environement we have in India



Lacar

# Thank you!



# materials for a better life