The Global Burden of Disease Attributable To Air Pollution: Latest Results and Future Directions for Source-Specific Burdens

> Dan Greenbaum President, Health Effects Institute ECT - 2015 New Delhi 5th September 2015

Trusted Science • **Cleaner Air** • Better Health

Air Pollution and the Global Burden of Disease

- Air Quality and Health
 - Estimating the Global Burden of Disease GBD
 - GBD 2010 Review
 - GBD 2013: What's New?
 - 2013 Preliminary Results
 - Looking Ahead:
 - GBD MAPS: Understanding Source-Specific Health Impacts in China, India and Eastern Europe
 - The Special Case of Traffic
- Concluding Thoughts

Trusted Science • **Cleaner Air** • Better Health

The Health Effects Institute Trusted Science Cleaner Air Better Health

- An independent non-profit institute providing trusted science on the health effects of air pollution for 35 years
- Balanced Core Support
 - US EPA and Industry (Worldwide Motor Vehicle)
- Partnerships
 - Also WHO, ADB, Clean Air Asia, TERI, Sri Ramachandra Medical School, EU, US DOE, industries, foundations, others
- Independent Board and Expert Science Committees
 - Oversee and intensively peer review all science
 - International experts from India, China, many others
- Over 350 scientific reviews, reanalysis conducted around the world, including increasingly in Asia

Understanding local impacts in a global context to inform policy

India's National Air Quality Challenge:

PM10:

- Number of critically polluted cities has increased from 57 in 2009 to 85 in 2012;
- Nearly half have critical pollution levels

Source: Based on National Ambient Air Quality Status 2009 and 2012

Indian Results: PM10 Evidence from HEI Chennai study Approximately 0.3% -0.6% increase in mortality per 10 μg/m³ PM10 **Similar Results in Delhi as Well...**

Dr. Kalpana Balakrishnan and colleagues HEI 2011

Fig. 23: A comparison of the estimated RR's for PM10 obtained from the core zonal model, alternative models and sensitivity analysis.

Relative Risk for 10 µg/m3 increase of PM10

Recent Indian studies look at diverse health end points....

Respiratory health symptoms dominate.... Broadening to include cardiovascular, eye disorders, cellular changes, cancer, premature deaths....

Asia in a Global Context

(PM₁₀ and Daily Mortality) The effects of pollution are more similar than different and global science can be broadly relevant

The Global Burden of Disease (GBD)

- A systematic scientific effort to quantify the magnitude of health loss from disease and injuries in 187 countries around the world from 1990 to 2010
 - E.g. cardiovascular disease, respiratory disease, HIV-AIDS, cancer, road traffic injuries and
- Risks factors associated with those diseases
 - E.g. smoking, diet, high blood pressure, air pollution, overweight
 - GBD 2010, published in The Lancet December 2012
- Organized by the Institute for Health Metrics and Evaluation (IHME), U Wash.
- HEI leadership for outdoor air pollution

2010: Ambient PM_{2.5} among the leading global risks for mortality and lost years of healthy life

(Lim et al 2012, and http://viz.healthmetricsandevaluation.org/gbd-compare/)

Top 20 Mortality Risk Factors in India for 2010 Ambient PM_{2.5} is 5th leading mortality risk factor

Extensive Press on Global Burden of Disease

Including detailed coverage in China/India/Western media

• *'Airpocalypse' in China: Air Pollution Kills Over a Million*

THE TIMES

The New Hork Times

Medical Daily

NEW: The Global Burden of Disease (GBD) 2013

More Comprehensive

- Health loss from over 291 diseases and injuries in 188 countries.
 - New estimates for all 76 risk factors including ambient and household air pollution
 - **Provincial level estimates for China, UK, Mexico**

Advanced Science

- Expands upon the methodology, datasets and tools in GBD 2010 including for air pollution – PM_{2.5}, ozone, household
 - New improved PM2.5 exposure data from ground level monitors, satellites, transport models
- PM health risk estimates now include 13 epidemiologic cohort mortality studies including new, large studies published since 2010
 - New data on pneumonia in children and adults

1990 – 2013 Change in Annual Average PM_{2.5} Enhanced ground monitoring and other data Leading to higher quality estimates

Changes in Life-Expectancy at Birth 1970-2013 Longer lives worldwide More people dying from heart disease

Estimating Mortality Risk for the Global Burden of Ambient PM_{2.5}

Five Major Diseases related to PM2.5

- Ischemic heart disease (IHD)
- Stroke
- Lower respiratory infection (Age 0 5)
- Chronic obstructive lung disease(COPD)
- Lung cancer

Ambient Air Pollution Cohort Adult Mortality Studies Used to Estimate Burden of Disease (including additional studies from Europe, Canada, Japan)

New Studies added for GBD 2013

Study	PM _{2.5} Mean (μg/m³)	PM _{2.5} Min (μg/m³)	PM _{2.5} 5 th /95 th (μg/m ³)	IHD HR /10 μg/m ³ (95% Cl)	CEV HR /10 µg/m ³ (95% Cl)	COPD HR /10 μg/m ³ (95% Cl)	LC HR /10 µg/m ³ (95% Cl)
American Cancer Society ^a (ACS)	14.2 N=486133	5.8	8.8/20.0	1.26 (1.16-1.38) n=29875	1.12 (1.01-1.24) n=9116	1.05 (0.95-1.17) n=9006	1.14 (1.06-1.23) 9,557
Six City ^b (SCS)	17.8 N=8096	8.7	10.2/23.6	1.33 (1.16-1.52) n=1065	0.89 (0.67-1.18) n=317	1.17 (0.85-1.62) n=247	1.37 (1.07-1.75) n=351
California Teachers ^c (CTS)	15.6 N=73,498	3.1	8.3/23.0	1.20 (1.02-1.41) n=773	1.16 (0.92-1.46) N=382	1.21 (0.88-1.68) N=196	0.95 (0.70-1.28) n=234
Adventist Study of Health and Smog ^d (ASHSmog)	29.0 N=3,239	12.9	15.0/45.1	1.00 (0.87-1.15) n=145			
Dutch Study of Diet and Cancer ^e (DSDC)	28.3 N=120,85 2	23.0	24.8/31.8	0.96 (0.75-1.22) n=3,521	1.62 (1.07-2.44) n=1,175		1.06 (0.82-1.38) n=1,670
Male Health Professionals ^f (MHP)	17.9 N=17,545	5.8	12.3/23.4	0.98 (0.71-1.36) n=746			
Nurses Health ^g (NHS)	13.9 N=66,250	5.8	10.0/17.8	2.02 (1.07-3.78) n=379			
Women's Health Initiative ^h (WHI)	13.5 N=65,893	3.4	7.4/19.6	2.21 (1.17-4.16) n=80	1.83 (1.11-3.00) n=122		
Canadian Census Health & Environment Cohort ⁱ (CanCHEC)	8.7 N= 2,145,400	2.1	3.6/13.8	1.30 (1.18-1.43) n=43400	1.04 (0.93-1.16) n=13300		
Canadian National Enhanced Cancer Surveillance System Cohort (NECSS) ^j	11.9	3.8	6.7/16.8				1.29 (0.95-1.76) n=2154
English Cohort ^k (ENDOC)	12.9 N= 835,607	8.5	10.6/15.2	1.05 (0.81-1.29) n=8168	1.00 (0.81-1.29) n=5458	1.43 (1.00-1.79) n=4105	1.11 (0.88-1.43) n=5244
Japanese Cohort ^m (JAPAN)	Mean Not Reported N= 63520	16.8	16.8/41.9			0.89 (0.70-1.12) n=64	1.24 (1.12-1.37) n=518
Agricultural Health Study ⁿ		5.7	7.3/12.6	2.68 (1.04-6.87)	1.78 (0.72-4.42)		0.75 (0.34-1.65)

GBD 2013 Premature Deaths: Air Pollution among top-ranked <u>global</u> risk factors

Global deaths attributed to top 20 Level 3 risk factors in 2013 for both sexes combined.

GBD 2013 Risk Factor Collaborators ***PRELIMINARY ESTIMATES***

India: Deaths attributable to all Risk Factors 2013

GBD 2013 Risk Factor Collaborators ***PRELIMINARY ESTI

India: Deaths attributable to combined risk factors

GBD 2013 Risk Factor Collaborators ***PRELIMINARY ESTIMATES***

A Key Need for Cleaner Air: Health Burden from Different Sources

Vehicles ~20% - 30% of total PM2.5 (depending on city and season)

Road Dust an additional 10% - 30%

Source: Adapted from Chowdhury et al. (2007).

Many Sources of PM in India

GBD MAPS: Understanding Source Specific Impacts

- Source-specific impacts best inform, drive climate and air pollution control measures
- GBD MAPS: Global Burden of Disease from Major Air Pollution Sources
- New HEI-IHME initiative to understand source-specific impacts (e.g. coal, transport)
 - China, India, Eastern Europe, in a global context
 - Using GBD 2013 methods, data
 - At national, provincial levels
- In partnership initially with leading Chinese, Indian partners (Tsinghua, IIT-B, others)

Underway now; China results expected in 2015; India in 2016

E

Trusted Science • **Cleaner Air** • Better Health

GBD MAPS International Steering Committee

Dan Greenbaum / Bob O'Keefe Terry Keating Hao Jiming Yang Gonghuan Christopher Murray Majid Ezzati K Srinath Reddy Michal Krzyzanowski Greg Carmichael Health Effects Institute US EPA Tsinghua University Peking Union Medical College IHME Imperial College, London Public Health Foundation of India, Delhi Kings College, London

GBD MAPS Working Group

Michael Brauer (co-chair) Aaron Cohen (co-chair) Wang Shuxiao **Zhang Qiang** Ma Qiao **Zhou Maigeng** Yin Peng **Chandra Venkataraman** Pankaj Sadavarte Wang Yuxuan Kan Haidong **Randall Martin** Aaron van Donkelaar **Richard Burnett Mohammad Forouzanfar Joseph Frostad**

University of British Columbia Health Effects Institute Tsinghua University Tsinghua University Tsinghua University China CDC China CDC **IIT Bombay IIT Bombay University of Texas, Galveston Fudan University Dalhousie University Dalhousie University Health Canada** IHME IHME

GBD MAPS: All the Major Sources

- Transportation (on-road, non-road)
- Household Biomass
- Brick Kilns
- Coal:
 - Power, Industry, Domestic
- Non-coal Industrial
- Agriculture
- Open Burning
- Solvent Use

Trusted Science • Cleaner Air • Better Health

GBD MAPS Approach

1.Estimate fractions of PM_{2.5} from transport, industry, coal-combustion and other sources

2.Multiply source fractions with ambient PM_{2.5} to estimate source-specific ambient PM_{2.5}

3.Combine source-specific ambient PM_{2.5} and GBD PM_{2.5} health estimates to provide source contributions to disease burden

GBD MAPS: Estimate of source emission contributions to ambient PM_{2.5} using latest available information on current and projected emissions (India 2013)

Source Emission Estimates

India 2013 PRELIMINARY ESTIMATES

Expect initial GBD MAPS results for India 2016

Power,

Industry

1990 – 2013 Change in Annual Average PM_{2.5}

Emission factors will then be applied to estimate Indian source-specific population exposure

The Special Case of Traffic Sources

Traffic Related Air Pollution & Health: An Expert HEI Review 2010

Summarized & synthesized over 700 studies on health effects of traffic

• However, not **all** of equal quality

Found :

- Highest exposures 300-500 meters from major roads
- Growing evidence of effects, especially asthma exacerbation in children

New:

- HEI Traffic Exposure, Tunnel Studies underway
- Updated traffic expert review to get underway in 2016 (10 more years of data)

The New York Times

January 13, 2010 Report Links Vehicle Exhaust to Health Problems

A retailoriship was found between pollution from vehicles and expained long function and accolorated functioning of the articles.

By MATTHEW L. WALD

Exhaust from cars and trucks exacerbates <u>asthma</u> in children and may cause new cases as well as other respiratory illnesses and heart problems resulting in deaths, <u>an independent institute</u> that focuses on vehicle-related air pollution has concluded.

The report, to be issued on Wednesday by the nonprofit Health Effects Institute, analyzed 700 peerreviewed studies conducted around the world on varying aspects of motor vehicle emissions and health. It found "evidence of a causal relationship," but not proof of one, between pollution from vehicles and impaired lung function and accelerated <u>hardening of the arteries</u>.

It said there was "strong evidence" that exposure to traffic helped cause variations in <u>heart rate</u> and other heart ailments that result in deaths. But among the many studies that evaluated death from heart problems, some did not separate stress and noise from air pollution as a cause, it said.

The Traffic Impact Area in Delhi: HEI Analysis: **55% of the Population** within 500 meters of a Freeway; 50 meters of a Major Road

An Important Traffic Concern: Older Diesel Health Effects

- Primary concern is exposure to particulate matter and NO_x from older diesel
- Also, evidence of respiratory effects:
 - reduced lung function, respiratory irritation, asthma exacerbation
- Diesel and cancer: IARC 2012
 - Older diesel a known human carcinogen
 - But highlights the changes with New Technology Diesel Engines (NTDE)
 - HEI ACES Results

Key IARC Evidence: Diesel Exhaust in Miners Study

(NCI/NIOSH Attfield et al. 2012; Silverman et al. 2012)

- Major occupational study in "non-coal and non-metal" mines
 - Risk of Lung Cancer increased 300% to 700% in exposed workers
 - Key input into IARC decision
- Some continuing questions about study
 - HEI Systematically reviewing and analyzing the data
 - HEI Expert Diesel Epidemiology Report on strength of study - Fall 2015

Concluding Thoughts

- We know much more today about the Health Effects of Air Pollution in Asia
 - Growing science base
 - New Short and Long Term Studies
- GBD is increasing understanding of the population health burdens
 - GBD 2010, and now GBD 2013 including new approaches to exposure and exposure-response
- Important clean air progress underway in China
- Actions beginning in India:
 - AQI, BS V/VI, thermal power plants
- Source-specific impacts are likely to best inform and drive future control measures
 - GBD MAPS
 - New Traffic Review and Studies

Trusted Science • Cleaner Air • Better Health

Thank You!

Dan Greenbaum dgreenbaum@healtheffects.org

