

Challenging Strategies and Cost Effective Technology Options for Achieving Stringent BS VI Norms

S.Krishnan Vice President – Ashok Leyland Engine R&D

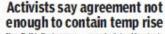
Contents

- Introduction
- Need for Emission Regulation
- BS VI Emission Scenario for CV & Challenges
- Emission Cycles
- Engine Technology for BS VI
- Thermal Management
- EATS Technology for BS VI
- Selection Criteria for DOC
- Selection Criteria for DPF
- Selection Criteria for SCR
 - Choice of SCR Catalysts V-SCR or Cu-Z
- Selection Criteria for ASC
- OBD & IUPR Challenges
- Other Challenges
- Way forward & Conclusion

Introduction - Why BS VI?

India becomes 62nd nation to ratify Paris climate deal

Visitwe Moture @timesgroup.com


New Delhi: Infla Sornally joined the Part's Agrosement on dimase change by submissing its inserument of rasification to the United Nations in New York on Sunday, the birth anniversary of Mahasma Gamhwersary of Mahasma Gamhand also the Insertas long of Non-Violena. "The couperg however, ra-

effed the deal with certain conditions keeping its development agenda in mind. Though the country has

Interpret the word "condition", is made amply clear in its "declaration" shake limits actions provided ingo: fhanchi and sochnological supports to move towards a low carbon growth path. India's declaration waid, "The gowermoeth of India doclares is motic-reanting shake as

Indid's permanent representative to the UN Syed. Albarudd in hands over the Par's climate deal document signed by President Pranab Multheriee to Santiago VTialpando, the head of UN treaty division

ires New Delhi: Environmenia- menial role in addressing isas lives welcomed influ's many men of loss and demase

(1) इन निवमों का संक्रिप्त ।
 (2) ये राजपत्र में उनके जंति
 केवीय मोटर वान निवम, 1989, ।

(क) उप-निवम (2), में-

जत:, केन्द्रीय सरकार, मोटर केन्द्रीय मोटर वान निषम, 1989 का बं

- (8) खेंदें (i), के 'परतुक म, 'मारत स्टननप' का प्रायाह बहा मा हा, क स्थान पर 'मारत स्टन IV या मारत स्टन VI' प्रविष्टि क्रमश: प्रविष्टि स्वी जाएगी;
- (य) यह (ii), की तालिका में, "भारत स्टेन-IV" की प्रथिष्टि नहाँ भी हो, के स्थान पर "भारत स्टेन IV वा भारत स्टेन VI" प्रथिष्टि क्रमश रखी नाणगी:

(ख) उप निवम (7), के परंतुक में, "भारत स्टेब-IV" की प्रथिष्टि के स्थान पर "भारत स्टेब IV या भारत स्टेब VI" रखा बाएगा; 2016 (1)

डारा संभाज्य प्रभावित सभी व्यक्तियों डारा उस तारीख में बच प्रारूप नियमों से अंतर्विष्ट उक्त अधिमुचना की प्रतियां जनसाधारण को उपलब्ध करबाई मई बीं, में तीस दिन की अबधि की समाणि से पूर्व आक्षेप और सुझाव आयंथित करने के लिए प्रकाशित किए गए वे

उक्त प्रारुप नियमों के संबंध में जनसाधारण से प्राप्त आलेपों और सुलाबों पर केंद्रीय सरकार डारा बिचार किया गया है

उक्त राजपत्र अधिमुचना की प्रतियां जनसाधारण को 19 फरवरी, 2016 को उपलब्ध करवाई गई थीं;

Introduction

□ Advancing towards sterner fuel standards helps to tackle air pollution in India.

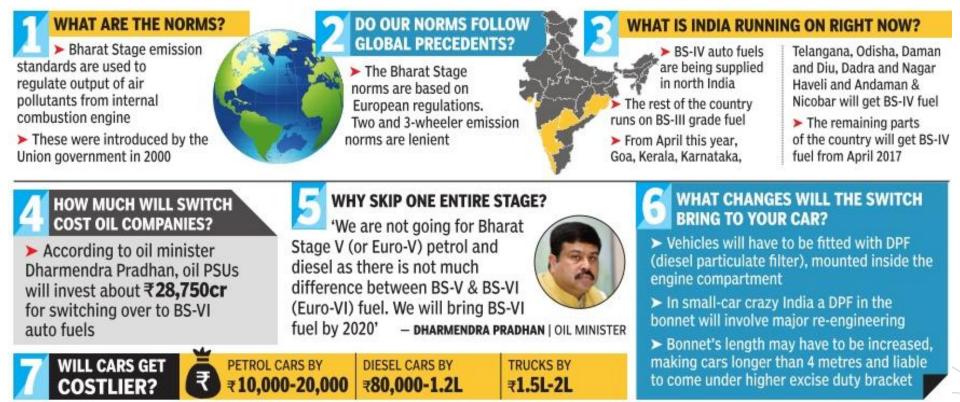
- India, under Prime Minister Modi led government is taking a bold step in skipping BS-V to implement BS-VI four years ahead the deadline.
- India will be the first country to skip the BS V stage and also the first to switch to BS VI in such a short span of time.
- Further BS VI fuel which is similar to the Euro 6 fuel cannot be blindly mirrored as the challenges related to driving conditions, speed and weather of India varies from that of Europe.
- □ If vehicles are not fine tuned to the stipulated Indian conditions then repercussions could be massive to correct the same after.

Challenging commitment

Indian auto industry ready for BS-VI Challenge

In INDUSTRY NEWS by motorindia – October 26, 2016 at 11:17 am

The Indian auto industry is committed to meet the challenge of achieving to BS-VI emission norms by 2020. The target is very stiff but the auto industry has accepted the challenge in view of the rising concerns on vehicular pollution, especially in the urban metros, stated Mr. Vinod Dasari, SIAM President, at a press briefing in the country's capital.



"India has been the fastest at adopting new safety and emission norms. This leap-frog would make India the first country in the world at accomplish such an accelerated progression in vehicular emission norms", said Mr. Dasari.

"This would not only entail a significant telescoping of long term investments into a much shorter timeframe of 3-4 years, but also deployment of a much larger technical resource drawn from world over to enable compression in the time taken for technical development, testing and validation of the vehicles in Indian conditions", he added.

10 Things you should know about BS VI

Govt has advanced the date when new standard for cleaner auto fuel kicks in, aiming to leapfrog to BS-VI norms by April 2020

10 Things you should know about BS VI

INDIA WILL LEAPFROG

– NITIN

GADKARI

Illustration:

Arya Pra

TO BS-VI DIRECTLY

FROM 01/04/2020

DIFFERENCE IN NORMS?

BS-VI norms not defined yet but will be equivalent to Euro-VI standards

PETROL EMISSION NORMS

Norm	CO	HC	NOx	HC+NOx	PM		
BS-III	2.30	0.20	0.15	-	-		
BS-IV	1.00	0.10	0.08	-	-		
Euro-VI	1.00	0.10	0.06	-	0.005		
DIESEL EMISSION NORMS							
Morriso	00	HC	NOV	HOLNON	DIV		

NOTH	00	116	NUX	HUTNUX	PIM
BS-III	0.64	-	0.50	0.56	0.05
BS-IV	0.50	-	0.25	0.30	0.025
Euro-VI	0.50	-	0.06	0.17	0.005

All figures in g/km Source: Indian Emissions Regulations/ARAI

India pledged at the recent global climate summit to improve the carbon emission intensity of its GDP by 33-35% by 2030 from 2005 levels It has also pledged the creation of an additional carbon sink of 2.5 to 3 billion tonnes of carbon dioxide equivalent through additional forest and tree cover by 2030 WHY IS INDUSTRY RESISTING?
 Oil refineries will need a substantial investment to upgrade refineries to supply fuel types that match BS-VI standards

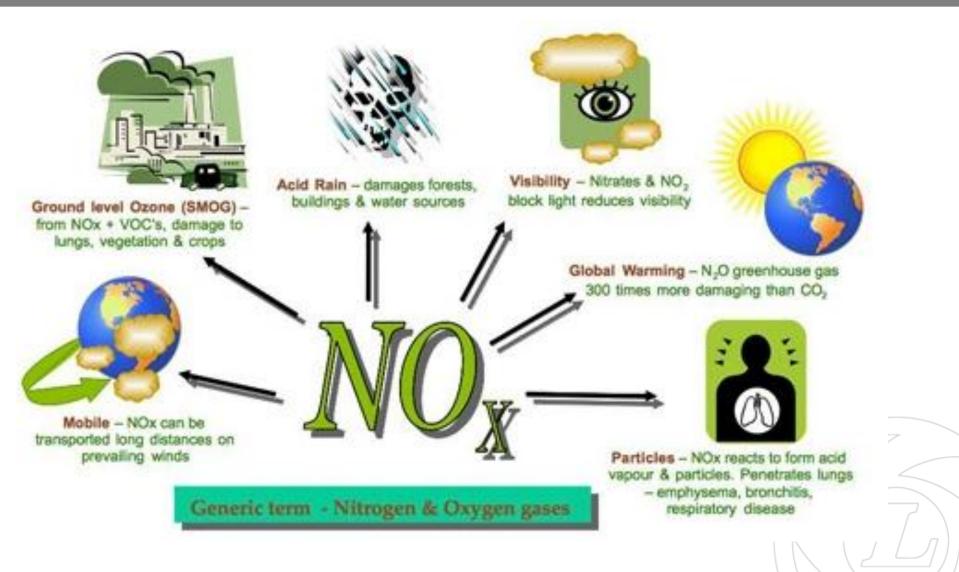
The shift of technology from BS-IV to BS-VI likely to cost anything between Rs 50,000cr and Rs 80,000cr to oil cos

 Skipping a step like BS-V puts extra pressure on auto manufacturers to produce compliant vehicles

INDUSTRY SAYS

The jump from BS-IV (equivalent of Euro 4) to BS-VI (equivalent of Euro 6) standards... will be too much of a significant technological jump for the auto firms

PAWAN GOENKA | MAHINDRA & MAHINDRA EXECUTIVE DIRECTOR (March 2015, before the govt advanced the switch)


MINISTER SAYS

I appeal to automobile industry to cooperate in the larger interest of the country NITIN GADKARI | TRANSPORT MINISTER

Need for NOx regulation

Need for PM & PN regulation

WHAT ARE THE HEALTH RISKS OF PARTICULATE MATTER?

Particulate matter poses a serious health risk because it can travel into the respiratory tract. PM2.5 is especially dangerous because it can penetrate deep into the lungs and sometimes even into the bloodstream.

HEALTH EFFECTS

- » Decreased lung function
- » Chronic bronchitis
- » Increased respiratory symptoms
- » Cardiac arrhythmias (heartbeat irregularities),
- » Heart attacks
 » Premature death

GROUPS SENSITIVE TO PM2.5

- » People with heart or lung disease
 - » Children
 » Pregnant women

» Older adults

Source: www.epa.gov

BS VI – Legislation Challenges

World harmonized test cycle

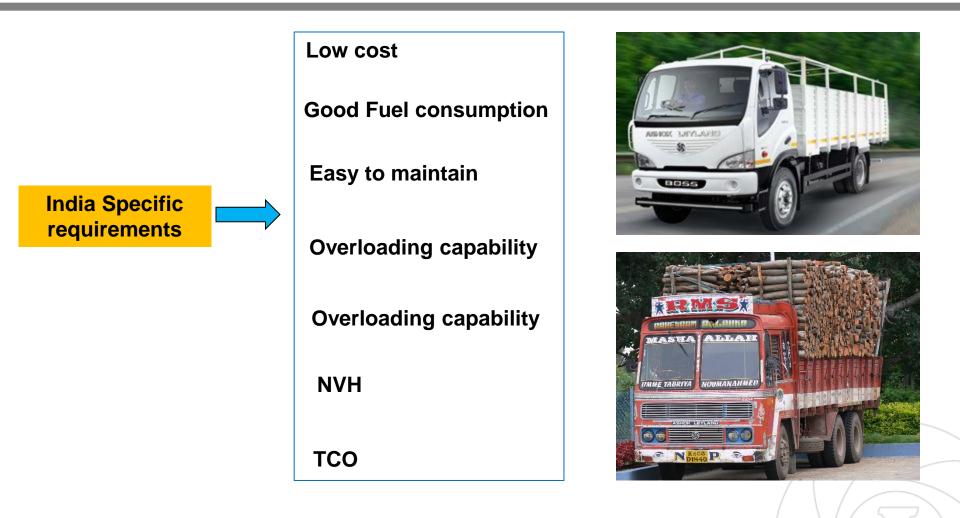
Emission limit: NOx; PM, PN, CO & HC

Useful life requirements

In-service conformity/ in- use emissions

Certification, conformity & enforcement

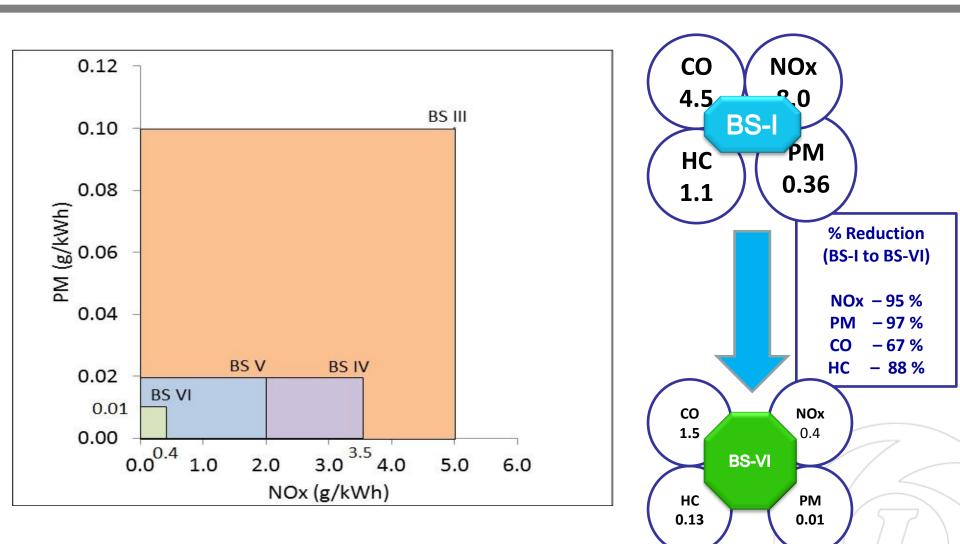
On-Board Diagnostics


NOx control monitoring

BSVI legislation

Market Requirement – Challenges

Indian market Challenges for ATS robustness



Challenging environmental conditions: Vibration, Cleanliness, fuel/ lubrication quality Road & infrastructure challenging condition.

Emission Norms

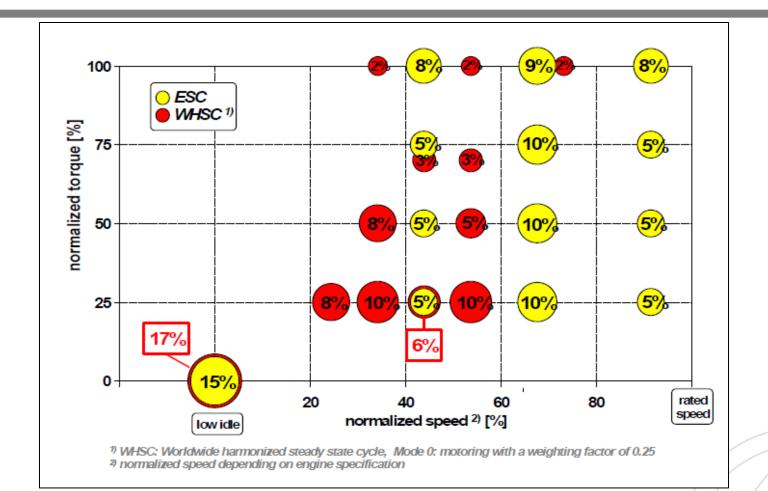
BS VI Emission Scenario for CV &

Challenges

Norm	Year	NOx	СО	НС	РМ	PN	Test Cycle
Bharat Stage I	2000	8.0	4.5	1.1	0.36	-	R 49
Bharat Stage II	2001/2005 (*)	7.0	4.0	1.1	0.15	-	R 49
Bharat Stage III	2005/2010	5.0	2.1	0.66	0.10	-	ESC
Bharat Stage IV	2010/2017	3.5	1.5	0.46	0.02		ESC , ETC (*)
Bharat Stage VI	2020 -	0.40	1.5	0.13	0.01	6 x 10 ¹¹	WHSC, WHTC(*)
	NOx 90	% redn.		P	M 50% re	edn.	

Limits for Steady state test cycle.

(*) Transient test cycle added from BSIV onwards. In addition, On Board Diagnostic (OBD) system is also mandated from BS IV.


BS IV to BS VI – Major Differences

S.No.	Parameter	BS-VI	BS-IV	
1.	Gaseous Mass emissions	New cycles WHSC , WHTC (Thermal loads are low)	Current cycles ESC, ETC	
2.	Particulate mass emissions	New cycles WHSC , WHTC	Current cycles ESC , ETC	
3.	Particle number test	New equip. and test	Not applicable	
4.	Crankcase emissions	New circuit in crank case breathing	Not applicable	
5	Engine power, CO2 , Fuel consumption	Fuel consumption and CO2 Modified procedure	Only engine power test	
6	Durability test (Optional)	Stringent	Less stringent	
7	OBD	World-wide Harmonized OBD, Complex, Severe	Euro V equivalent, Simple, Less stringent	
8	NOx control Monitoring	SCR systems - Limit different (Severe)	Less stringent	
9	Random NOx (Off cycle emission)			
10	COP	COP Similar to BS-IV		
11	In-service conformity	rvice conformityVehicles from field emission test PEMS tests (25K Kms) within 18 months		
12	IUPR	IUPR In-use monitoring of OBD sensors/monitors		
13	PEMS demo test	Prototype vehicle tested with PEMS	Not applicable	

BS VI – Steady state cycle

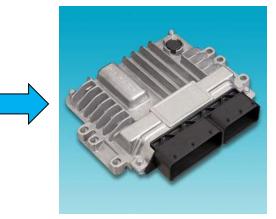
Low operation zone – challenge for emission conversion due to lower temperature

BS VI Transient Cycle

Low operation zone – challenge for emission conversion due to lower temp

BS VI – Technology Development Challenges

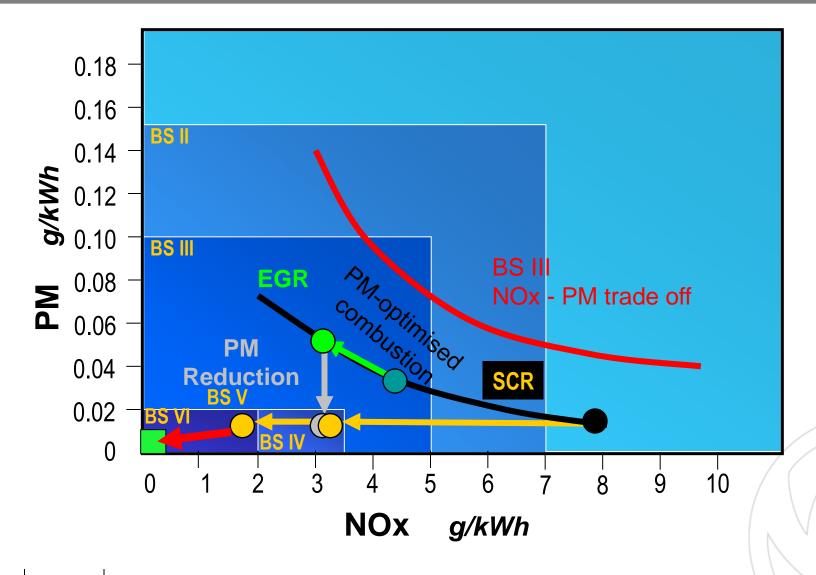
BS IV BS VI



ADVANCED ENGINE TECHNOLOGY with FUEL ECONOMY

ADVANCED CONTROL TECHNOLOGY, SENSORS & ACTUATORS

ADVANCED EXHAUST TECHNOLOGY


BS VI – NOx vs. PM Challenges

Parameter change	Effect on NOx	Effect on PM
Cycle temperature increases		Better combustion conditions prevails
There is excess air in bowl		Towards complete combustion
Longer premixed combustion phase		Improved initial mixing, chances of better combustion

BS norms trend – PM vs. NOx SCR (or) EGR + SCR for BS VI

BS VI – Technology Development Combustion Challenges



High Injection Pressure

Increased Combustion Control First Multiliet First Interction system - 2003

- Targeted Engine Out Emission
- Efficient Combustion
- Best Air Path Management
- Best Fuel Efficiency

Advanced Turbo control

Variable Valve Actuation

BS VI – Advanced Engine Technology With Thermal Management

Intake Throttle

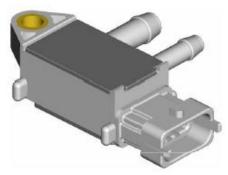
Exhaust Throttle

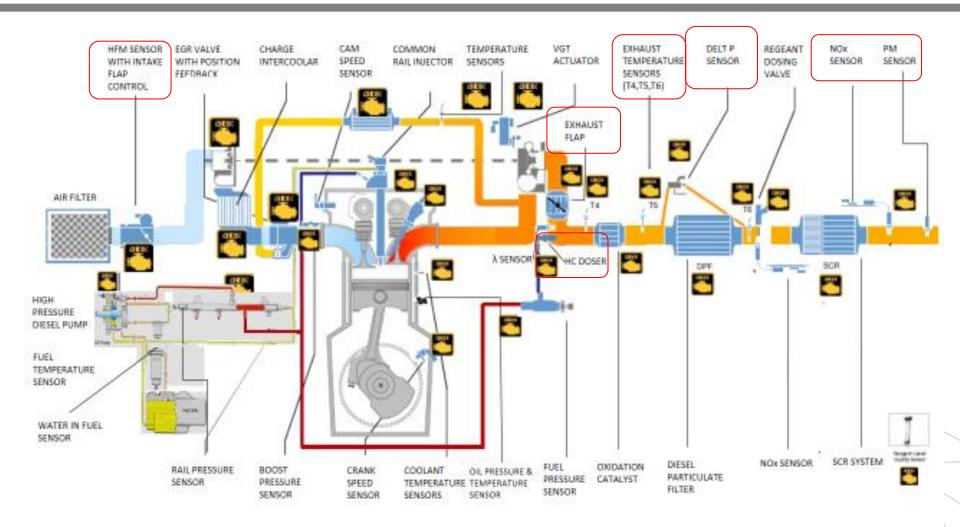
Hydrocarbon Injection

Temperature control for exhaust system can improve for ✓ DPF active regeneration

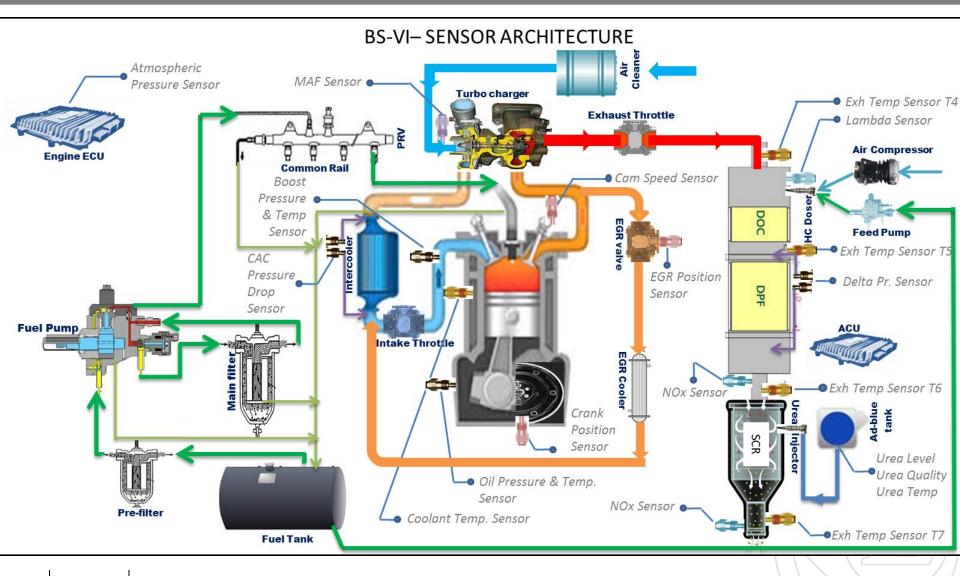
SCR inlet temperature improvement for Ad blue injection

BS VI – Exhaust Sensors




PM sensor

Differential Pressure sensor



BS VI – Advance Engine & Exhaust Sensors & Actuators

BS VI ADVANCED EXHAUST TECHNOLOGY COMPLEXITY

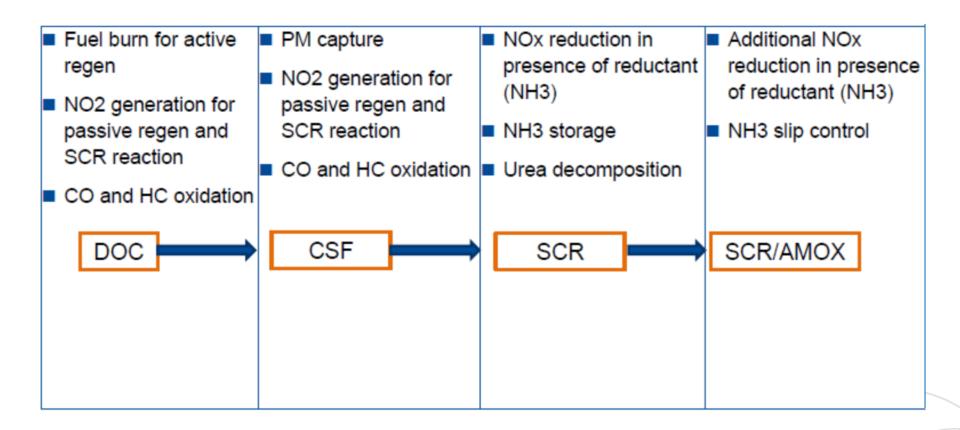
Engine Operating Challenges

Duty Cycle

- Low exhaust gas temperature
- □ High NOx flux on non-EGR engines
- Potentially long idle or low low-speed conditions (bus applications)
- **CSF** regeneration under challenging conditions

□ Fuel adulteration

Urea quality


Calibration

Thermal management

Urea dosing, deposit control and NH3 "event" prevention
 NH3 storage management

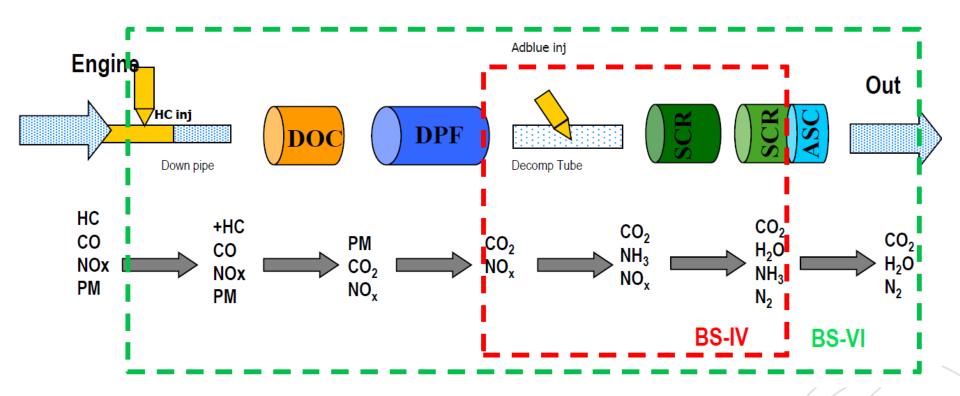
Challenges in Effective Chemical Reactions

Medium NOx vs. High NOx

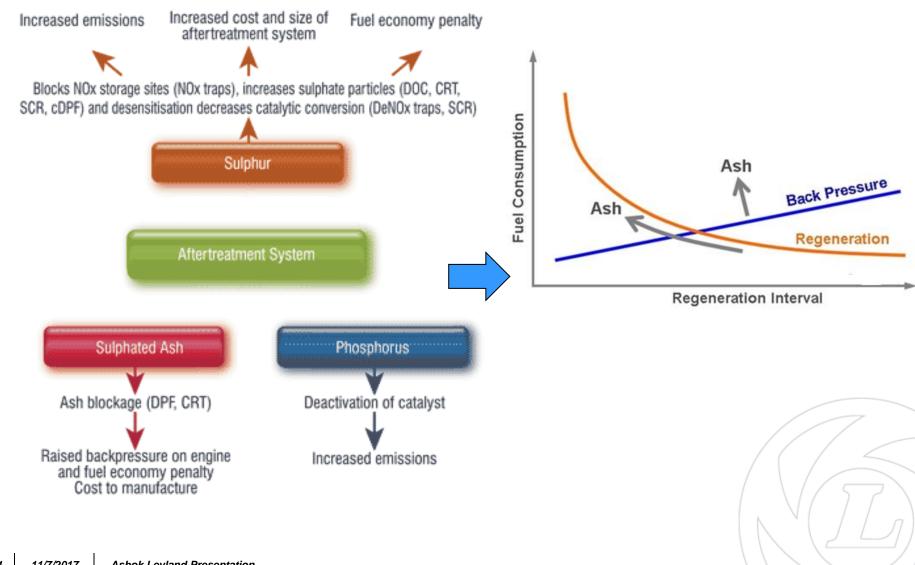
		High NOx	Medium NOx
& ≻	ABILITY TO MEET EMISSIONS OVER USEFUL LIFE (EATS DURABILITY : SCR CAT deterioration)	-	+
	HIGH ENGINE DURABILITY	+	-
LEGISLATION DURABILIT DRIVEN	NEED FOR HIGHER SCR EFFICIENCY CATALYST & CONTROL SYSTEM	-	+
	IMPACT OF SCR CATALYST TEMPERATURE DURABILITY ≤ 650°C , DUE TO ACTIVE DPF REGEN (Cu- CATALYST)	+	+
	ENGINE COST	+	-
rom Iven	EATS COST (requirement on increased efficiency/volume)	-	+
CUSTOMER DRIVEN	Total Fluid Consumption (Adblue dosing qty) * adblue estimated cost is 70% of fuel cost in India by 2020	-	+
SRT EN	DEVPT COMPLEXITY – Time and effort required for emission optimization	-	+
EFFORT DRIVEN			
✓ 3+ fo	r High NOx strategy vs. 6+ for Medium NOx strategy		

DOC /DPF Catalyst functional challenges

Diesel Oxidation Catalyst

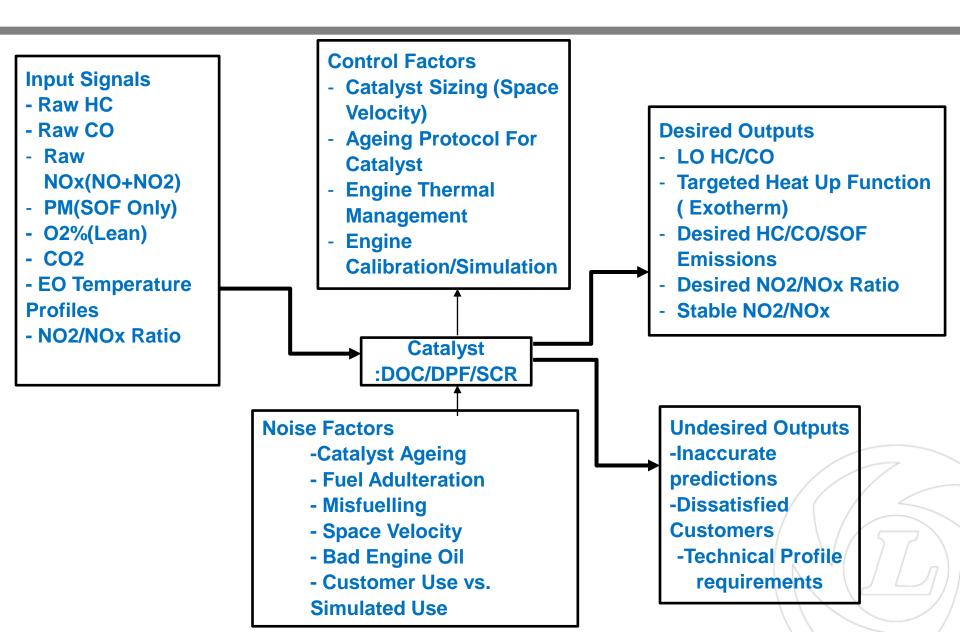

- ✓ Effective soot filter and reduce PN
- ✓ Secondary HC reduction
- ✓ Generate additional NO2 for improving SCR NOx conversion
- ✓ Should have higher soot mass limit
- ✓ Low Back pressure

Diesel Particulate Filter


- ✓ Oxidize HC and CO to reduce these emissions in engine exhaust.
- ✓ Oxidize NO to NO₂ for filter passive regeneration and improving SCR NOx conversion.
- Create exotherm through HC injection to provide the temperature required for filter active regeneration.
- ✓ Allow low HC Slip during HC dosing
- ✓ Low Back pressure

Challenges in Effective Chemical Reactions

Impact of Sulphur Ash Phosphorus on DPF


ASHOK LEYLAND

Challenges on material selection for DPF

Diesel Particulate Filter parameters	Performance: Functionality	Robustness: Thermal Durability	Reliability: Functionality, Safety
Back Pressure Impact (mbar)			
Soot Mass Limit/ Regeneration interval			
PN			
Filtration efficiency@ 0.2g/L (%)	Green col	or indicate	es the hiah
Co-efficient of thermal expansion RT- 800 °C (10-7/°C)	Yellow colo		r for key factor. intermediate r.
Thermal Shock Parameter ^o K			
Thermal Conductivity@ 1000°K (W/mK)			

P-Diagram for BSVI Catalyst System

ASHOK LEYLAND

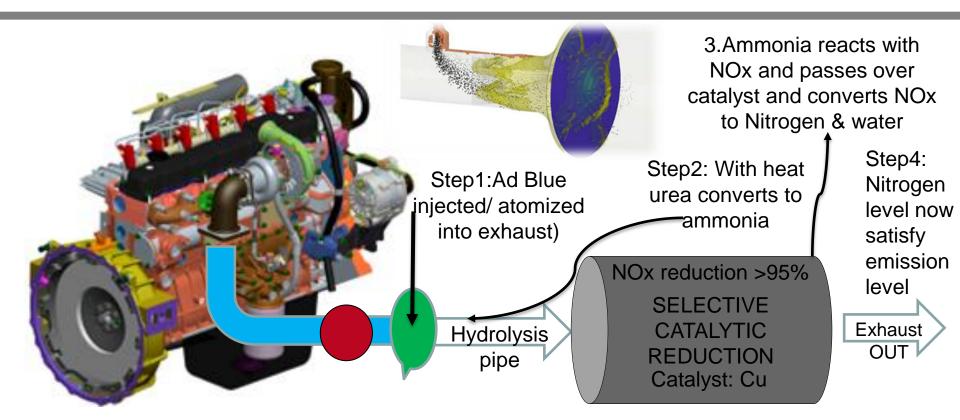
SCR Catalyst functional challenges

Selective Catalytic Reduction Catalyst

- Cu catalyst should have low temperature activity requirements for NOx conversion
- ✓ Better sulphur tolerance with fast recovery of conversion efficiency
- ✓ Low volume
- ✓ Higher Durability

Ammonia Slip Catalyst

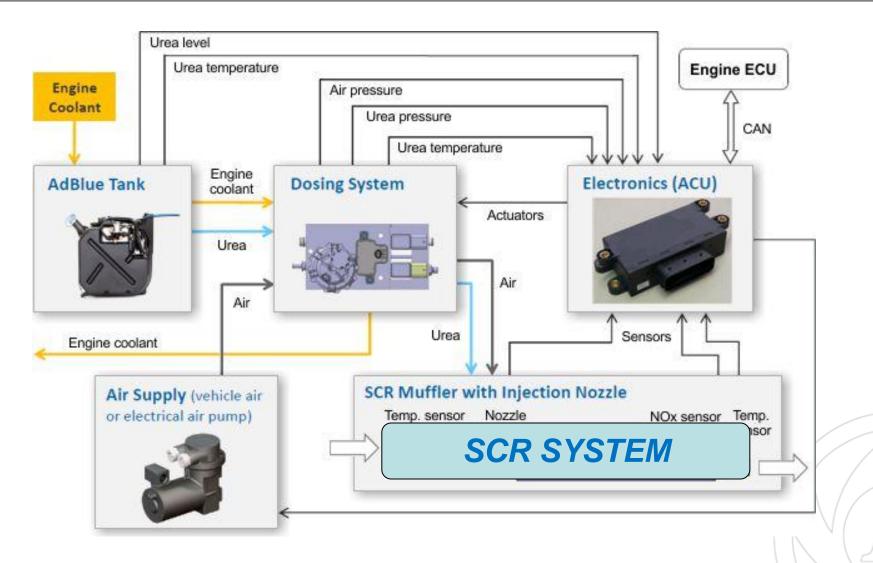
 ✓ NH₃ oxidation and selectivity for N₂


SCR Catalyst Selection Process

Deremetere			O4	Cu-Z		Fe-Z		Demortes
Parameters	Weightage	Rank	Total	Rank	Total	Rank	Total	Remarks
Low temperature NOx conversion efficiency	5							Less NO2 sufficient to improve conversion efficiency
High temperature stability	5							Durability -Higher thermal durability helps to have robust design and reduce DPF field failures during regeneration. V2O5 up to 550C, Fe-z 650C, Cu-Z 750Cmax temperature.
Sulfur Tolerance	3							Robustness - low Sulfur tolerance demands frequent regeneration to de-sulfate and regain SCR performance.
System Cost	4							V205 along with DOC and DPF can have 20% savings on ATS catalyst system cost.
Packaging space	4							Cu-Z will have 5% packaging space reduction compared to V2O5
Total score		166		180		149		

- Rating based on catalyst technology applications on engine models.
- Active regeneration, OBD and RDE requirements can be challenging for low temperature applications with V2O5.

SCR System Calibration Challenges

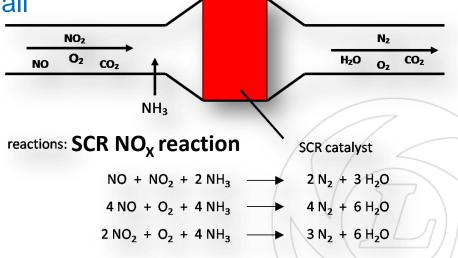

Advanced active emissions control technology system that injects a liquid-reductant agent through a special catalyst into the exhaust stream of a diesel engine


```
(NH_{2})_{2} + CO_{(aq)} \implies (NH_{2})_{2} CO(s)
(NH_{2})_{2} CO(s) \implies HNCO + NH3 (Thermolysis)
HNCO + H_{2}O \implies CO_{2} + NH_{3} (Hydrolysis)
4NH_{3} + 4NO + O_{2} \implies 4 N_{2} + 6H_{2}O
```

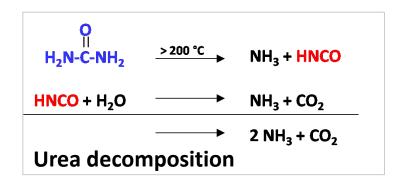
36 11/7/2017

SCR System Calibration Challenges

SCR System Design Challenges

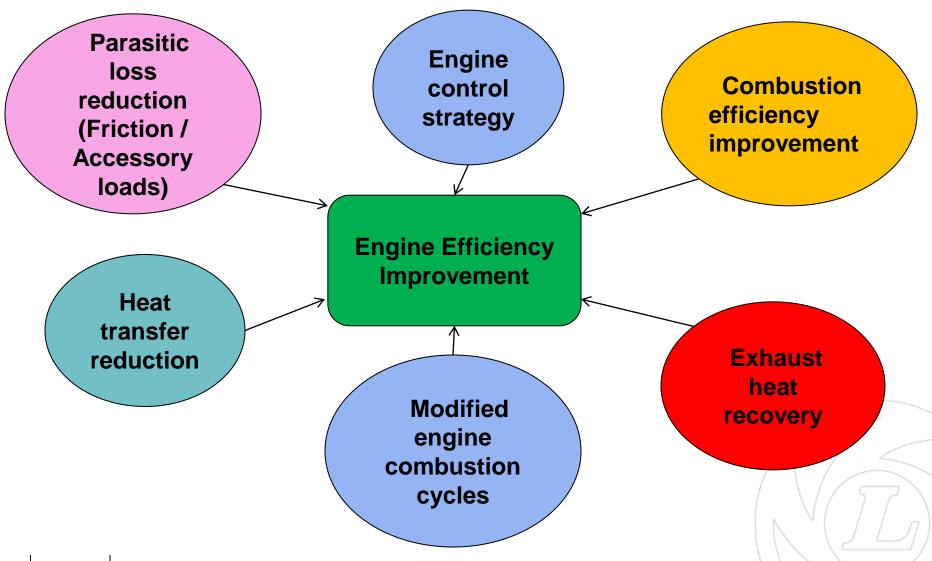

Key factors for a high SCR catalyst efficiency:

» Homogeneous distribution of the Ammonia in the exhaust

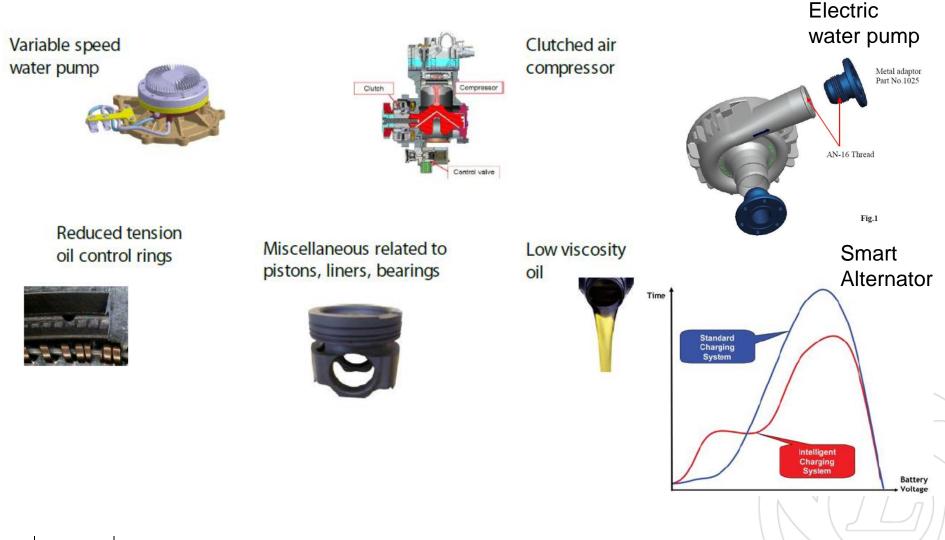

» Homogeneous distribution of the exhaust over the catalyst surface

» Avoiding of wall contacts causing urea fall out

» Fast droplet evaporation for Urea decomposition and Ammonia formation



Urea is used as and aqueous solution called AdBlue, which is injected into the exhaust pipe



Post BS VI: Towards Future Fuel Economy

OBD – Types of Monitoring

"Total functional failure" (TFF):

Total break down of system or component. Not related to emission limits. e.g. Removal of DOC

"Component monitoring" (Comp Mon):

Monitoring for single components. Not related to emission limits. Input components (sensors): Electrical checks, rationality Output components (actuators): Electrical checks, functional response e.g. Rail pressure sensor drift

"Performance monitoring" (PM):

Functional checks of system properties. Not related to emission limits. To be working in normal range e.g. DPF performance monitoring

"OBD threshold monitoring" (Threshold monitoring):

Function must detect exceed of OBD thresholds. E.g. SCR catalyst efficiency monitoring

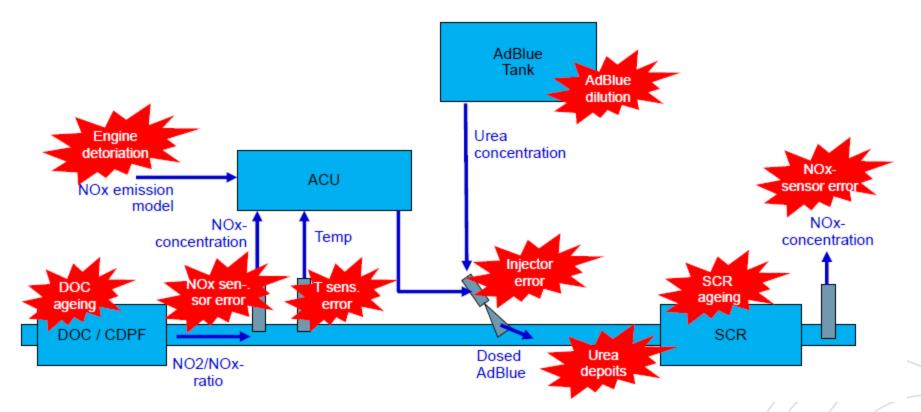
" Anti tampering Monitoring"

Specific failures are covered under Anti- tampering monitoring e.g. Urea quality deterioration

BS-IV and BS-VI – OBD Differences

BS IV	Euro V	Euro VI
ESC and ETC for emissions	ESC and ETC for emissions	WHSC and WHTC for emissions
NOx = 3.5 gm/kWh	NOx = 2 gm/kWh	NOx = 0.4 gm/kWh (0.46 for WHTC)
PM = 0.02gm/kWh 0.03gm/kWh for ETC	PM = 0.02gm/kWh 0.03gm/kWh for ETC	PM = 0.01 gm/kWh
Durability = 100000(5yrs) / 200000(6yrs) / 500000(7Yrs)	Durability = 100000(5yrs) / 200000(6yrs) / 500000(7Yrs)	Durability = 160000(5Yrs) / 300000(6yrs) / 700000(7yrs)
NOx OBD Torque Limiter > 7.0 gm/kWh NOx	NOx OBD Torque Limiter > 7.0 gm/kWh NOx	NOx OBD torque Limiter = Performance requirements
MIL lamp ON = 5 gm/kWh OR 0.1 gm/kWh PM	MIL lamp ON = 3.5 gm/kWh OR 0.1 gm/kWh PM	MIL lamp ON : 1.5 gm/kWh (BS VI OBD- 1) / 1.2 gm/kWh (BSVI OBD-2) OR PM 0.025 gm/kWh
3 DC MIL ON	3 DC MIL ON	2 DC MIL ON
OBD test cycle = Short ESC	OBD test cycle = Short ESC	OBD test cycle = Warm WHTC
Delete cycles = 40 Warm Up C	Delete cycles = 40 WUC	Delete cycles = 40 WUC / 200Hrs
No class for errors from legislation	No class for errors from legislation	A,B1,B2 and C class errors classification

BS-IV and BS-VI – OBD Differences



BS IV	Euro V	Euro VI
Distance / time since MIL on counter	Distance / time since MIL on counter	Distance / time since MIL on counter + Cumulative time during MIL on
Long term error requirement	Long term error requirement	NOx relevant error counter information
MIL Off after 3 full cycles	MIL Off after 3 full cycles	Continuous to short MIL in next heal cycle, off in 3DC
MIL ON for some time after engine start, then off, then if error is present ON	MIL ON for some time after engine start, then off, then if error is present ON	MIL has two sequences. One to show readiness and then another sequence to show errors
Emission effect due to failure checked in ESC. NOx related errors emission effect to be checked in ETC	All emission effects to be checked in ETC	Emission Effect due to all failures checked in WHTC
Reagent quality monitoring is optional	Reagent quality monitoring is optional	Reagent quality monitoring is a must

Diagnostic Monitors for SCR Failure Detection

FAILURE PIN-POINTING WITHIN THE DIAGNOSE OF A SCR SYSTEM

In Use Performance Ratio (IUPR)

In-Use performance ratio* :

- → Measure for the frequency of monitoring a component in the field
- → In-Use performance ratio (IUPR) must be fulfilled by each monitor of the OBD system

Ratio = Numerator Denominator

<u>Numerator</u> is incremented, if monitoring conditions have been satisfied <u>Denominator</u> is incremented within 10 secs, if defined criteria are fulfilled, i.e.

- 1. 600 s since engine start
- 2. 35°C >Ambient temp > -7°C
- 3. Elevation <=2500 m
- Engine rpm>= 1150rpm for minimum 300s
- 5. Accpedal not pressed and Vehicle speed < 1.6kmph/Engine speed <= Idling+200rpm

- Availability of consistent quality ULSD all across India is key for BSVI successful launch.
- Use of BS VI ULSD fuel from the time of launch
- Implement lessons learnt from earlier trials related to contamination, cleanliness, water ingress, corrosion, effect of additives.
- DEF distribution network and availability at every fuel dispensing station will be key enabler.
- Ensuring DEF quality, consistency and handling / dispensing is key.
- Appropriate technology choices, robust system integration, understanding real world behavior, maintenance and service practices and end user awareness is critical for overall success and acceptance of BS VI products.

Other Challenges

Prolonged low temperature operations due to challenging duty cycles: Coking of catalyst will remain a challenge needing aggressive thermal management strategies on specific applications

□ Possibility of catalyst face plugging due to use of Bio diesel

Over - temperature exposure during operation: □ Effectively managing DPF soot load / soot regeneration is very critical.

□ Pt contamination from DOC / DPF reducing De-NOx efficiency of SCR.

□ Prolong idle – HC Desorption

- □ Frequent start Stop and low temperature:
- Effect of water condensation and effective drainage
- Managing NOx sensor for dew point condition

Poisoning of NOx sensors
 Prolong elemental exposures and deposits such as Fe, Si, Mg can cause NOx sensor catalyst to poison and hence making it fail to perform it's function with desired accuracy.

□ Lube oil borne ash and Sulphur as well as additives.

□Based on oil consumption, origin of elements such as Sulphur, Phosphorous will be required to manage closely. Lube additive impact on catalyst performance is key

□Ash from lube oil will be another aspect to be consider for DPF sizing and service

□ Other fluid exposures

□ Exposure to truck wash fluid and tap water does not lead to washcoat adhesion issue or active Cu species leaching (for Cu- Z SCR)

BS VI Implementation: Concluding Statements

- BS VI implementation Requires significant changes to ENGINE & EMISSION
- Earlier on-road trials are required more effectively to confirm the design.
- BS VI fuel availability is critical for completion of development on time.
- Further extensive calibration effort is required for latest OBD IUPR standards.
- Public awareness and strict implementation required to ensure the practical success of BS VI norms pan India.

Commitment

Besides regulations, we have the moral responsibility to pass-on a safer and cleaner planet to the Next Generation !!!

THANKS