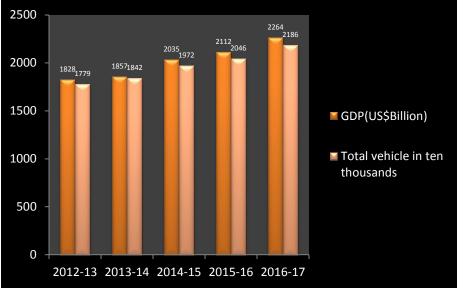


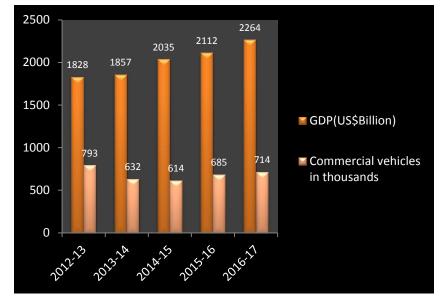
Fuel Efficiency Norms for Heavy Duty Vehicles

Presented By: Sumant Kumar

- Impact of Growing Economy in India
- Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles.
- Formation of Steering Committee
- BEE Notification

Impact of Growing Economy in India

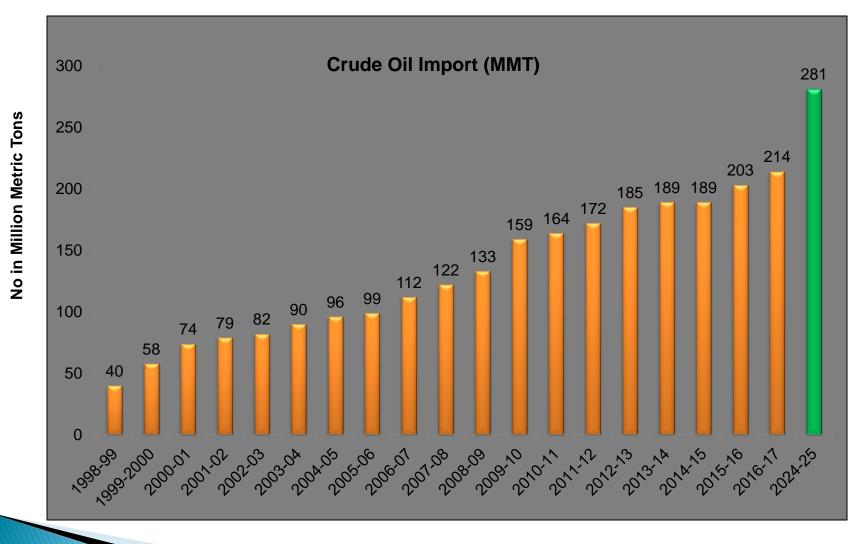

- > Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles.
- > Formation of Steering Committee
- > BEE Notification



Automobile Domestic Sales Trend

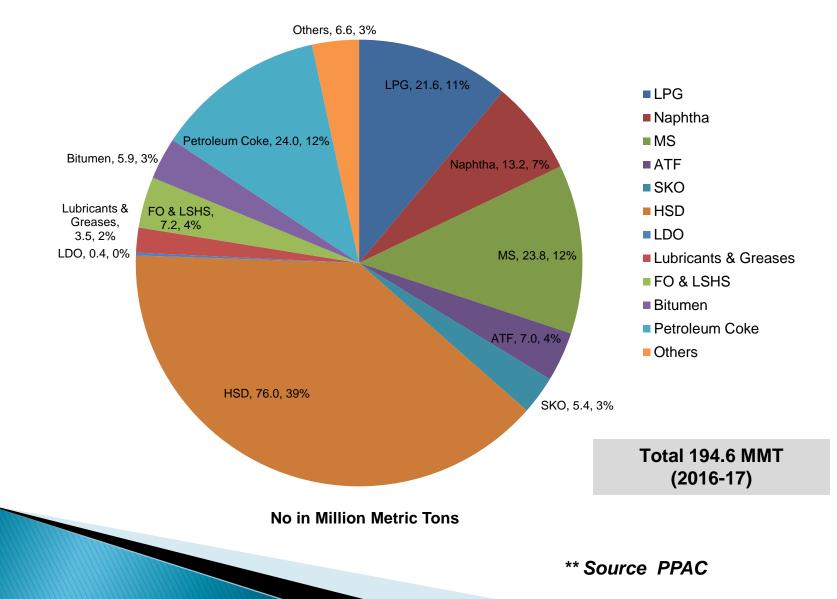
Total Vehicles

Commercial Vehicles

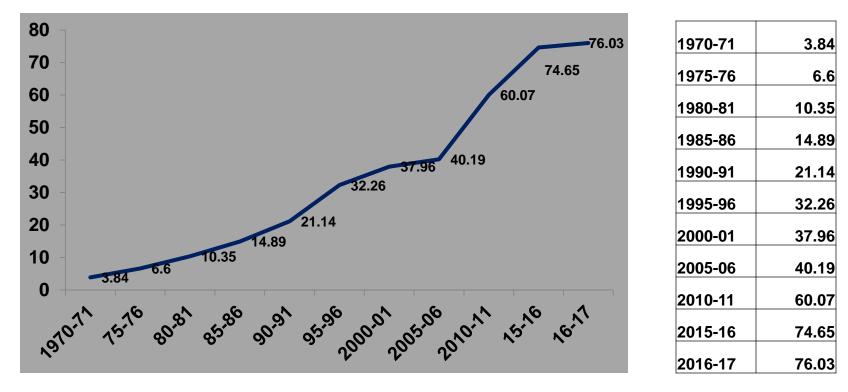


Year	GDP(US\$Billion)	Total vehicle in ten thousands	Commercial vehicles in thousands
2012-13	1828	1779	793
2013-14	1857	1842	632
2014-15	2035	1972	614
2015-16	2112	2046	685
2016-17	2264	2186	714

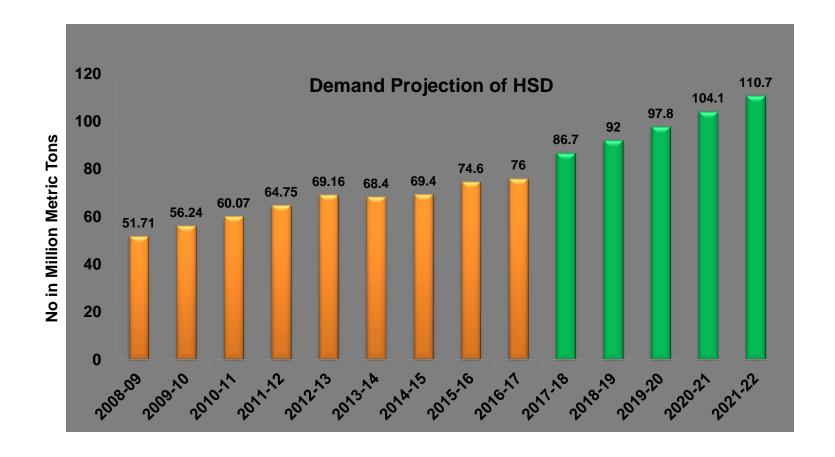
** Source SIAM & World Bank


Crude Oil Import (MMT)

** Source PPAC



India's Consumption Pattern of Petroleum Products


Trends in consumption of diesel in India (Million Tonnes)

CAGR 7%

Demand Projection of HSD in India

** Source PPAC

- Impact of Growing Economy in India
- Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles.
- > Formation of Steering Committee
- > BEE Notification

Pattern of HSD consumption in India

Background :

- India's requirement of HSD to increase from 76.03 MMT in 2016-17 to 110.7 MMT in 2021-22.
- Major Consumption is by Heavy Duty Vehicles (trucks and buses).

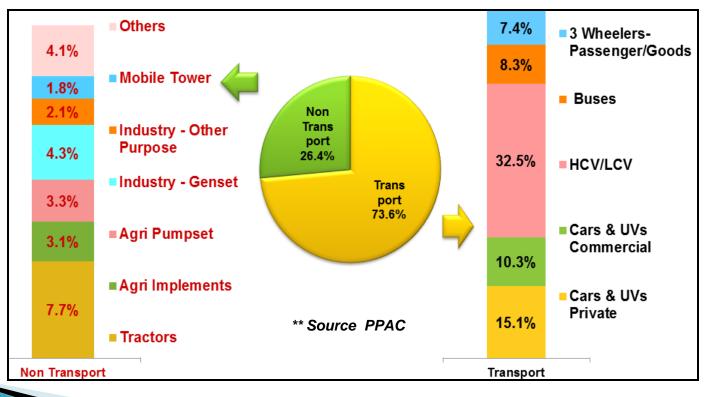


Figure depicts Energy loss in vehicles caused due to various factors and potential energy savings.

Types	Urban / Intercity (percent)	Potential of energy savings (percent)
Engine Losses	60	28
Heat rejection	26	
Exhaust heat	24	
Gas exchange	4	
Friction	1.5	
Engine accessories	2.5	
Aerodynamic losses	4-10 / 21	11.5
Drivetrain losses	5-6 / 2	
Braking losses	15-20 / 0-2	
Auxiliary loads	7-8 / 4	
Rolling resistance	8-12 / 13	11

Engine losses account for maximum losses.

No in Million Metric Tons

Program Agenda

- Impact of Growing Economy in India
- > Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles.
- > Formation of Steering Committee
- > BEE Notification

Approaches to the design of fuel consumption target values

✓ Stringency of the target

Timing of Introduction

✓ Compliance roadmap

Dimensions of Fuel consumption standards

- □ Fuel consumption standards based on
- GVW or Kerb weight
- Segments of buses and trucks
- □ Type of Fuel consumption standards
- Engine standards
- Vehicle standards
- Unit(s) of fuel consumption standardskm/L or L/km or L/ton-km or L/k Wh
- Testing procedure for fuel economy test
- On road testing
- Engine testing
- Chassis + Engine testing
- Computer simulation

Test cycles for fuel consumption testing

HDV Global Regulatory Landscape

Only four countries in the world currently have HDV CO2/efficiency standards

Country	HDV efficiency regulation in place	Regulations under consideration
U.S.	1	1
China	✓	· · · · · · · · · · · · · · · · · · ·
EU-27		1
India		1
Japan	 ✓ 	1
Brazil		1
Canada	✓	✓
Russia		 ✓
Mexico		 ✓
S.Korea		✓

**Source: ICCT

Fuel consumption norms for buses and trucks in other countries

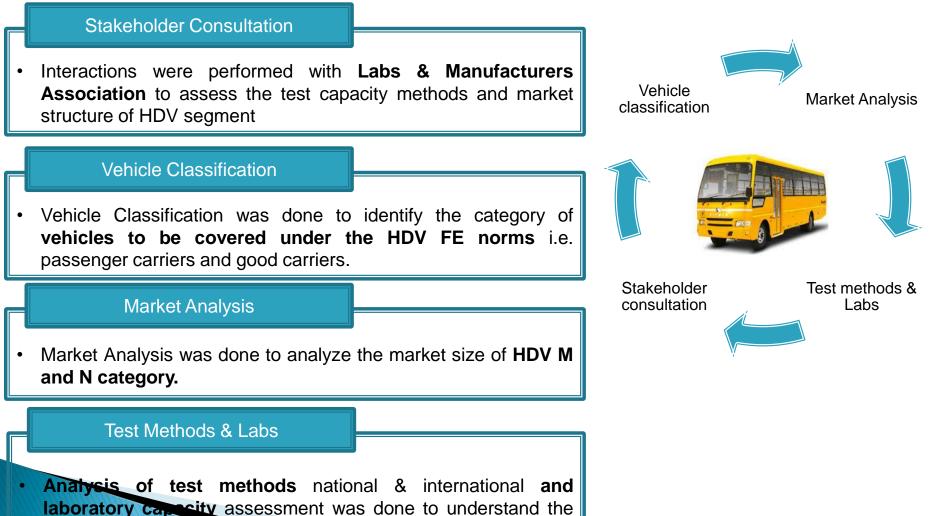
Country/Region	Standard	Measure	Structure	Targeted Fleet	Test Cycle	Implementati on		
	Fuel consumption standards							
United States	Fuel	mpg	Single standard for cars and size based standards for light trucks	New	U.S. Café	Mandatory		
Japan	Fuel	km/l	Weight-based	New	JC08	Mandatory		
China	Fuel	l/100-km	Weight-based	New	NEDC	Mandatory		
Australia	Fuel	l/100-km	Single standard	New	NEDC	Mandatory		
South Korea	Fuel	km/l	Engine size based	New	U.S.EPA City	Mandatory		
Taiwan	Fuel	km/l	Engine size based	New	U.S. Café	Mandatory		
		Emi	ssion standards					
European Union	CO2	g/km	Single standard	New	NEDC	Voluntary		
Canada	GHG (CO2,CH4, N2O, HFC5)	l/100-km	Vehicle class-based	In-use and new	U.S. Café	Mandatory		
California	GHG (CO2,CH4, N2O, HFC5)	g/mile		New	U.S. Café	Mandatory		

Major challenge in setting up fuel consumption standards

- One of the pre-requisites for development of fuel consumption standards is collection of **baseline data** for various models of buses and trucks under pre-defined test conditions.
- For establishing the baseline for fuel consumption standards, fuel consumption or fuel economy data under standardised test conditions is required for each model of buses and trucks for all manufacturers for the baselines year.
- One of the biggest challenges for developing fuel consumption standards for trucks and buses was non-availability of any reported fuel economy data of trucks and buses, either by manufacturers or government bodies.

Agenda

- Impact of Growing Economy in India
- > Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles
- Formation of Steering Committee
- > **BEE** Notification


Process followed

- Formation of Steering committee by MoP&NG.
- Formation of sub-committes
- Formation of working groups
- Submission of reports to BEE by the steering committee
- Notification of Norms by BEE
- Implementation by MoRTH

Project Approach

facility in place in India. Indertake the HDV testing.

Vehicle Classification

Vehicle Category	Category Name	Category Details (GVW in Tons)						
	Buses (Carrying Passengers)							
Category – M ₁	Car	< 3.5T						
Category – M ₂	Bus	< 5T						
Category – M ₃	Bus	5T						
Trucks (Carrying Goods)								
Category – N ₁	LCV	≤ 3.5T						
Category – N ₂	MCV	3.5T ≤12 T						
Category – N ₃	HCV	12 T						

Test Methods

S. No.	Type of Test	Simulation of	Countries considering fuel consumption norms for HDVs
1.	On-road	NA	India
2.	Chassis Dynamometer	Road	China
3.	Engine Dynamometer	Road and non- engine components	US, EU, Japan
4.	Computer Simulation	All	US, EU, Japan, China

Lab Capacities in India

Parameters	ARAI	VRDE	ICAT	CIRT
Test Track	NA	Available	Development under process	NA
Facility for chassis Dynamometer	Yes	Yes	Yes	NA
Facility for Engine Dynamometer	Yes	Yes	Yes	Yes
FE – Test Equipment	Yes	Yes	Yes	Yes
Trained Manpower	Yes	Yes	Yes	Yes
NABL Accreditation	Yes	Yes	Yes	Yes

Agenda

- Impact of Growing Economy in India
- > Why FE Norms for Heavy Duty Vehicles
- > Development of Fuel Economy norms for heavy duty vehicles
- > Formation of Steering Committee
- BEE Notification

CSFC standards for HDVs-1st phase(W.e.f 1.4.18)

N3 Rigid vehicles at 40 km/h						
Gross vehicle weight	Axle	Equation	for	deriving	target	fuel
range configur		consumption	on (1/1	00km)		
12.0-16.2	4x2	Y=0.362X+10.327				
16.2-25.0	6x2	Y=0.603X+6.415				
16.2-25.0	6x4	Y=0.723X+4.482				
25.0-31.0	8x2	Y=0.527X+8.333				
25.0-31.0	8x4	Y=0.928X-0.658				
31.0-37.0	10x2	Y=0.960X-5.100				

N3 Rigid vehicles at 60 km/h						
Gross vehicle weight	Axle	Equation	for	deriving	target	fuel
range	configuration	consumpti	on (I/10	0km)		
12.0-16.2	4x2	Y=0.788X+9.003				
16.2-25.0	6x2	Y=0.755X+9.546				
16.2-25.0	6x4	Y=1.151X+3.122				
25.0-31.0	8x2		Y=C).650X+12.16	60	
25.0-31.0	8x4	Y=0.968X+7.692				
31.0-37.0	10x2		Y=0.650X+12.160			

X = Gross vehicle weight in tonnes

Y = Normalized value (fuel consumption) in litres/100kms

CSFC standards for HDVs-2nd phase(W.e.f 1.4.21)

N3 Rigid vehicles at 40 km/h						
Gross vehicle weight Axle configuration		Equation for deriving target fuel consumption				
range		(l/100km)				
12.0-16.2	4x2	Y=0.329X+9.607				
16.2-25.0	6x2	Y=0.523X+6.462				
16.2-25.0	6x4	Y=0.673X+4.032				
25.0-31.0	8x2	Y=0.430X+8.780				
25.0-31.0	8x4	Y=0.732X+2.558				
31.0-37.0	10x2	Y=0.963X-7.753				

N3 Rigid vehicles at 60 km/h						
Gross vehicle weight Axle configuration Equation for deriving target fuel consumption						
range		(l/100km)				
12.0-16.2	4x2	Y=0.600X+9.890				
16.2-25.0	6x2	Y=0.515X+11.271				
16.2-25.0	6x4	Y=0.932X+4.515				
25.0-31.0	8x2	Y=0.382X+14.598				
25.0-31.0	8x4	Y=1.318X-5.148				
31.0-37.0	10x2	Y=1.043X-5.913				

X = Gross vehicle weight in tonnes

Y = Normalized value (fuel consumption) in litres/100kms

CSFC Standards for HDVs

Salient features- BEE Notification

- > Norms for HDCV of category M3 and N3
- **GVW> 12 T in accordance with CMVR 1989**
- > 1st phase of the norms are effective 1.4.18 & the 2nd phase from 1.4.21
- FC of each vehicle of a particular category shall be< FC value derived from the equation of that category</p>
- > Applicable to vehicles complying with BS IV emission norms
- > For BS VI emission norms , a suitable correction factor would be used
- > Testing method would be CSFC
- > MoRTH to enforce the norms
- > Conformity of production (COP), by MoRTH, to be once in 2 years

Benefits

Reduced dependency on import

Reduced carbon emission

> Money saving

Increase in energy sustainability

Step forward to align with the world on environment protection

Presented By: Sumant Kumar Contact Number: 9650035601 Email Address: sumant_kumar@yahoo.com