

The Compliance of BS VI Sustainable Approach

02nd Nov 2017

K Senthur Pandian

Associate Chief Engineer Head - Diesel Engines (Automotive) Mahindra and Mahindra Limited

Major Drivers – Automotive Powertrain

Major Drivers – Automotive Powertrain

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

CO₂ Type Approval Values – Passenger Segment (India)

Kerb Weight, kg

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

CO₂ Type Approval Values – SUV Segment (India)

Kerb Weight, kg

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

CO₂ Type Approval Values – All Segments (India)

Major Drivers – Automotive Powertrain

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Legislation Overview in India

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

BS VI Emission in India – April 2020

- Two Step Emission Reduction from BS4 to BS6 Quite ambitious move
- DPF and LNT/SCR Technology adaption in ~ 3 years timeframe

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Indian Real Driving Emission (IRDE)			
Country	Certification Cycle	Supplementary Cycle in Chassis Dyno	On Road Testing
	• FTP 75	 <u>US06</u> : High speed & High Aggressive <u>HWFET</u> : High speed & Less aggressive <u>SC03</u> : Mid speed cycle, AC ON & solar load 35° C <u>FTP75</u> : 1609 m , Standard Ambient <u>Cold FTP 75</u> : at -7° C ambient 	• Not Applicable
**** * * ***	• NEDC 120	Not Applicable	 Well Established CF 2.1 : 2017 CF 1.5 : 2020
	• JC 08	Not Applicable	Not Applicable
	• NEDC 90	 Approach 1 Random cycles with dynamic temperature and ambient pressure 	 Approach 2 To derive from Europe

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Periodic Reviews by Tech Committee & Progress Reporting to MoRTH

Major Drivers – Automotive Powertrain

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Exhaust After-treatment - Challenges

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Sensors

- Exhaust Temperature sensor (Before Oxidation catalyst)
- Exhaust Temperature sensor (Before particulate filter)
- Differential pressure sensor
- Lambda sensor

DPF is mandatory for emission norms BSV and beyond

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

- The process of burning the particulates accumulated in the DPF is called "Regeneration"
 - $C+O_2 \rightarrow CO_2$ (Active Regeneration)
 - C+ 2NO₂ → CO₂ + 2NO (Passive Regeneration)
- Active regeneration needs temperatures
 ~600 Deg C in the presence of O₂
- Passive regeneration required temperatures are 250 ~450 Deg C with the presence of NO₂

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Exhaust Gas Temperature Downstream Catalyst Standard Operation Mode

- Need for high regeneration Interval
- To maximize CRT effect
- Thermal Regeneration at high loads

- Lambda of Exhaust > 1.05 preferred
- Low EGR levels to control smoke
- Optimal Injection Strategy

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Highway Cycle

Regeneration Interval in kms

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

City Cycle

Regeneration Interval in kms

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

- In the city cycle, the engine out temperatures are lower due to the Lower engine load points. Temperature is about 375 Deg C
- To Increase the temperatures to Regeneration temperatures a technology called "Late Post Injection" needs to be adapted
- This late post injection is a "Cat-
- Late Post Injection in the magnitude of 6 mg/hub is sufficient to burn the soot in the DPF
- In city cycle regeneration, the risks of poor regeneration efficiency is higher leading to higher oil Dilution.

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

- Indian driving conditions require ~ 30% more regen duration than Europe
- In spite of High regeneration duration, still soot is not fully burnt

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Conventional Injection targeted to hit the Combustion bowl Late Post Injection impinging on the cylinder walls

- In the conventional diesel engine combustion the injection is targeted to hit the combustion bowl where it is expected to get combusted.
- In the late post injection concept the diesel injector injects at a very retarded timing, thereby the Hydro-carbons are released into the exhaust for increasing the exhaust temperatures via the Diesel Oxidation catalyst by exothermic.
- As the injection impinges on the cylinder walls, the diesel dribbles through the piston rings and gets accumulated in the oil Sump.
- This results in the phenomenon of "Oil Dilution" where the engine lube oil gets mixed with diesel fuel.
- With increase in the number of regenerations the diesel level mixing with the lube oil increases leading to diesel carry over into the intake pipe through the crankcase blow-by system. This results in un-intended acceleration of the engine due to the fuel vapors. This phenomenon is called "Self-acceleration"

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – An Overview

Procedure and Formulae to be followed as per standard R83

- M_{si} Emissions measured in Normal mode in g/km
- M_{ri} Emissions measured in regeneration mode in g/km
- D Number of NEDC cycles completed in Normal mode from '0'g soot loading to Fully soot loaded DPF
- d Number of NEDC cycles completed in Regeneration Mode

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – Challenges in Indian Market

- Thick Road Traffic, extended idle : Critical for DPF Regeneration
- Extreme operations : 0 ~ 5500 m, + 52 °C, low city avg speed of ~ 8 kmph
- Low engine speed / high load driving behavior

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – Challenges in Indian Market

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – Challenges in Indian Market

Typical City operation & DPF scenario Data from Chennai City cycle

- 35% higher Regeneration frequency
- 30% extended Regeneration duration
- Risk of high oil dilution unintended self acceleration, a safety concern

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

DPF – Challenges in Indian Market

High Temperature & Thermal Stress

Oil Dilution

Increased Regeneration Frequency Extended Regeneration duration

European city cycle regeneration

Chennai city cycle regeneration

Ash Deposition Fuel & Oil Quality

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

LNT – An Overview

- Chemical Based filter for Nox
- Stores the NO₂ in lean phase
- NO₂ gets reduced to N₂ in Rich Phase
- Performance is dependent on
 - Exhaust Temp
 - Space Velocity
 - NOx Pre Load
 - NOx Concentration

System Requirements

- 2 Lambda Sensors 1 US and 1 DS
- Temperature US and DS LNT
- Well Calibrated Air system for Lean -

Rich transition

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

LNT – An Overview

Engine Speed [rpm]

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

LNT – An Overview

Targets of Rich Mode:

- Should have no change in torque when mode change over happens.
- No change in Noise.
- FE penalty should be as minimum as possible.
- Smoke values during rich pulse should be as minimum as possible as it will impact the DPF Regen interval.

Requirements of Rich Pulse

- CO > 2%
- HC < 0.8 %
- O2 < 0.8 %
- Smoke as less as possible

Trigger Point for Rich Pulse

- Engine out Nox Integral
- Target Tail Pipe emissions
- Ageing of the LNT
- Sox Load

Detection of End of LNT Regen

 When the down stream Lambda sensor turns to rich and crosses upstream sensor value.

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

- Fuel Sulphur poisons NOx Storage sites by forming Sulphates.
- De-sulphation needed to activate poisoned sites
- Frequency : ~ 800 km to 1000 km with 10ppm Sulphur fuel
- 600°C to 750°C with λ <1 to avoid LNT damage.

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

SCR – An Overview

- High Efficiency
- Wide range function
- Independent of engine system
- Modular / Sizable Technology
- Sulphur Resistive
- Higher System Price
- Extremely Complex System
 - Urea tank & Filling System
 - Supply Module
 - Dosing Module
 - Urea Mixer
 - Urea Warning System

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

SCR – An Overview

AdBlue-Dosing Module

SCR-cat

- SCR needs aqueous urea solution for NOx reduction.
- Mixer for uniform distribution of urea into catalyst.
- Metallic zeolites (Mainly Copper & Iron) in wash coat.

NO)

DPF

NO2

- Higher NOx conversion from ! 200 °C onwards
- Aqueous urea freezes below -11 Deg C

NO:

OXI-cat

CO

Engine raw

emissions

PM

Urea Decomposition

<u>Thermolysis (160 – 180 ° C)</u>

 $H_2N - Co - NH_2 \rightarrow NH_3 + NHCO$

<u>Hydrolysis (180 – 200 ° C)</u>

HNCO + H₂O \rightarrow NH₃ + CO₂ Std.: 4 NH₃ + 4 NO + O₂ \rightarrow 4 N₂ + 6 H₂O NO₂/NO_x <50% "Fast": 4 NH₃ + 2 NO + 2 NO₂ \rightarrow 4 N₂ + 6 H₂O NO₂/NO_x = 50%

"Slow": $4 \text{ NH}_3 + 3 \text{ NO}_2 \rightarrow 3.5 \text{ N}_2 + 6 \text{ H}_2\text{O}$ NO₂/NO_x > 50%

N2

Tailpipe out

emissions

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

SCR – An Overview

- To maximize UI & NH₃ Distribution
- Use of NH₃ slip CAT, if required
- Urea consumption is critical

Major Drivers – Automotive Powertrain

Upcoming Legislations | Technology Over view | Rear World Fuel Economy | Cost of Ownership

Measures to improve Real World Fuel Economy

Base Engine

- Friction reduction
- Right-sizing
- Turbo optimization
- VVL

Thermal Management

- Demand controlled cooling
- Fast heat-up
- Insulation
- Efficient climate control

Transmission

- DCT
- No of speeds 6 → 8
- Efficiency Improvement
- Wider gear spread

48V Hybrid

- Belt starter Generator
- E-Boost
- Accessory electrification

Plug-in Hybrid

- P0 & P4 concept
- High Voltage systems
- Accessory Electrification

Rolling Resistance

- Low rolling resistance tires
- Wheel bearing
- Drive shaft joints

Aerodynamics

- Optimized vehicle shape
- Active aerodynamics
- Optimized wheel/wheel-house
- Air curtain
- Underbody design

Weight Reduction

- Mild, medium, strong
- High strength steel
- Light-weight materials
- Composites

BSVI Compliance Approach

To Summarize ...

- Two step emission upgrade, Short Development time
- On-time right fuel availability for fleet validation
- Clarity on IRDE, decides selection of appropriate technology
- Country specific EAS Technology adaption challenges
- High Cost of Ownership, Technology incubation cost
- CO₂ Challenges, Hybrid & BEV Technology yet to shape-up

Unique challenges ahead ...

Mahindra Rise.

Thank You

Disclaimer

Mahindra & Mahindra herein referred to as M&M, and its subsidiary companies provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of M&M or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, M&M or any of its subsidiary companies is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackage or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by M&M or its subsidiary companies. Information contained in a presentation hosted or promoted by M&M is provided "as is" without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. M&M or its subsidiary companies assume no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.