Diesel – a Clean and Efficient Fuel with BSVI Emission

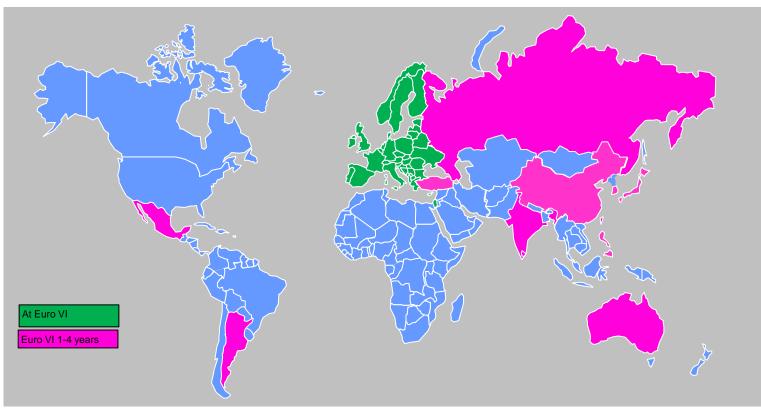
Dr. Anuradda Ganesh

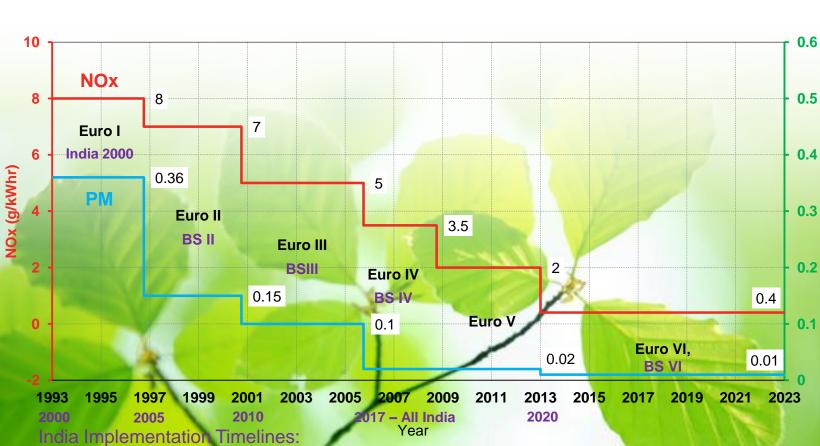
Director, Research, Innovation and Compliance 2nd November 2017

Content:

- Emissions Norms Worldwide
- Emission Norm Evolution
- BSVI Emission norms
- Importance of Diesel Engines in HD Commercial vehicle segment
- Real World Driving Emissions and Comparison
- Diesel Engine and Aftertreatment Technologies Integration
- Continued Evolution for Fuel Economy / GHG

Conclusion

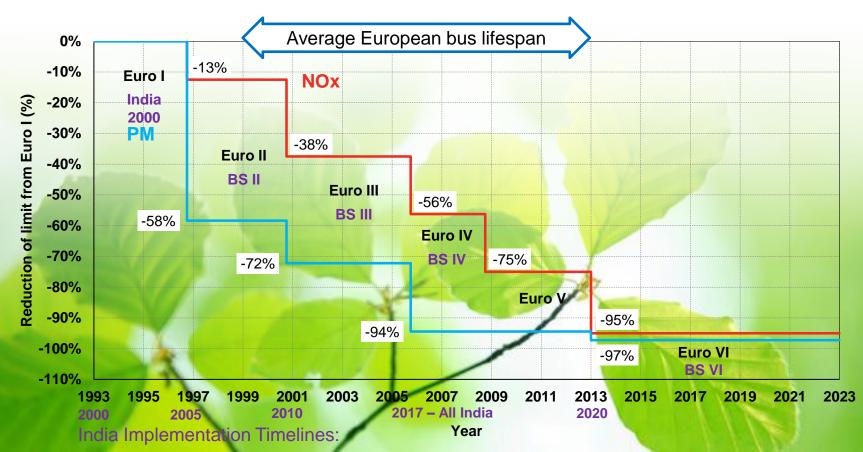

Global Emissions Map (On & Off HWY)

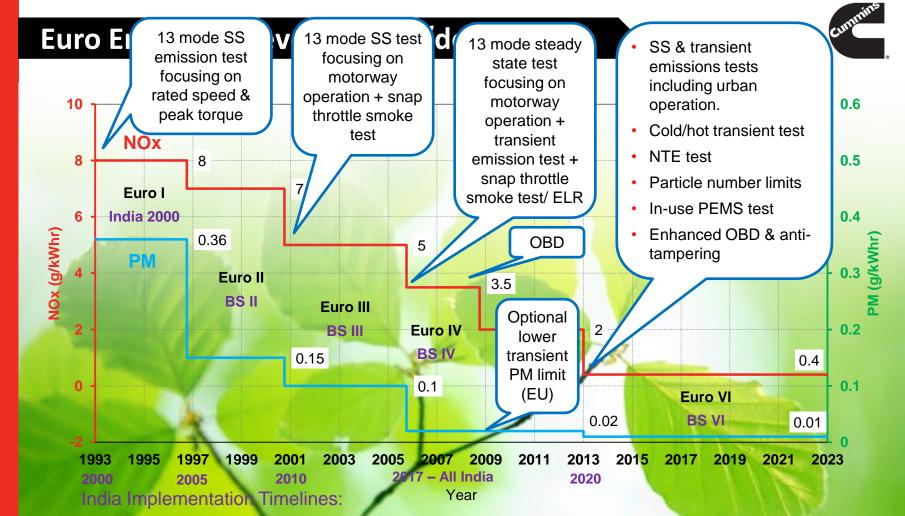


Global Rollout of Euro VI (or Euro VI adopted) Norms:

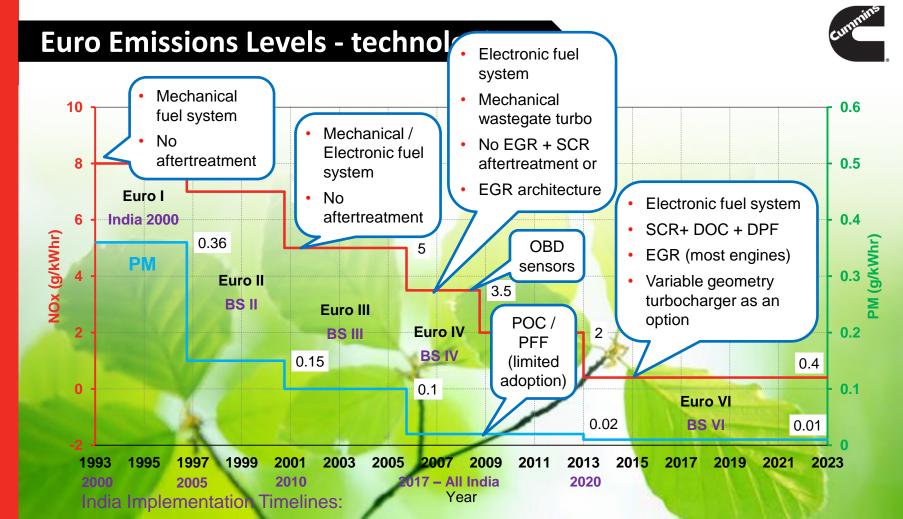
Challenging Emissions Limits

Euro Emissions Levels


PM (g/kWhr)


0.3

0.1


Euro Emissions Levels

Challenging Emissions Limits

Challenging Emissions Limits

BSVI Emission Norms:

9

BSVI Norms Dictate Equally Stringent Limits for Diesel Engines:

- For > 3500 kg GVW category, CI engines have equal or stringent emission limits compared to PI engines.
- CI engines have to additionally certify over WHSC cycle with stringent NOx and THC limits.
- Off Cycle Emissions (WNTE) applies to CI and Duel Fuel engines only.
- For M and N category vehicles with <=3500 kg reference mass, NOx limits are relatively relaxed for CI engines however NOx+THC limits are stringent compared to PI engines.
- Real Driving Emissions needs including compliance ratio post OBD II will ensure NOx and PM emissions in check – Both criteria pollutants predominant with Diesel engines.

Why?

Fuel Economy Offered

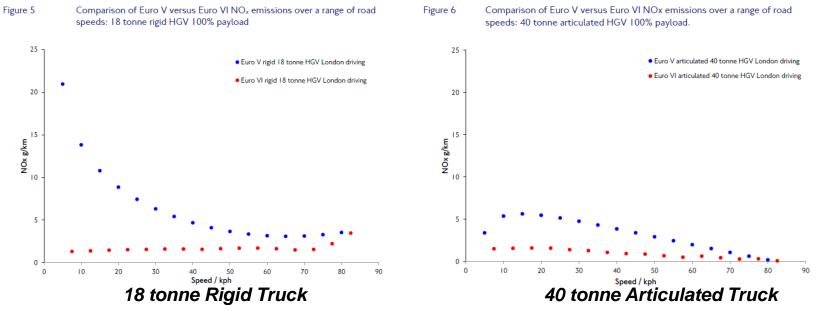
Long range per filling – suitable for long distance travel

Ultra Low Emissions at BS VI level & In use compliance

Choice of prime mover even for Hybrids

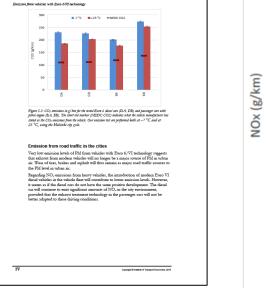
Technology available for deployment and now

Improvement potential for GHG reduction


Established ULSD network

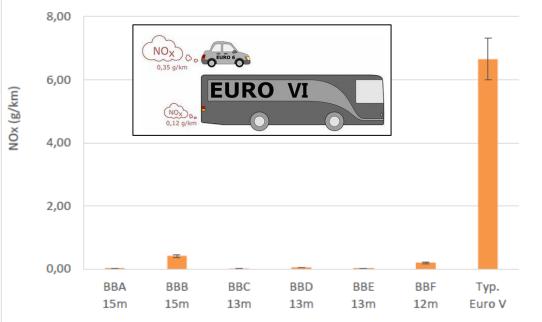
Euro VI Norms and Impact on Real Life Emissions

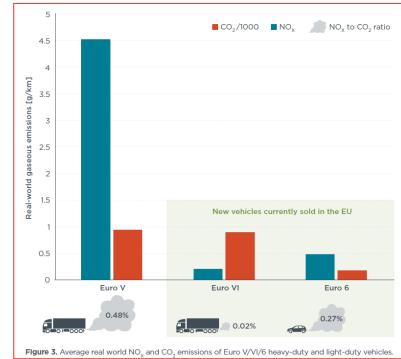
Transport for London data:



- Significant NOx reduction in real driving cycle compared to Euro V vehicle
- NOx emissions lower with loaded vehicle High exhaust temperatures
- DPF guards against wide variety of loads and duty cycles on PM emissions

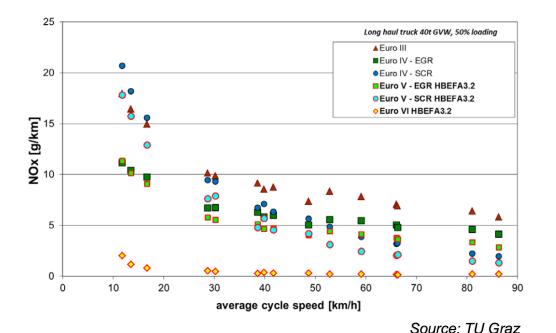
Norwegian data – city bus




Figure S.1: NO_x emissions in g/km for six city buses (BBA-BBF) with Euro VI engine. Emission values are very low compared to the emissions from a typical 12 meter bus with Euro V engine.

https://www.toi.no/environment-and-climate/diesel-cars-have-high-emissions-in-real-traffic-article33388-1314.html

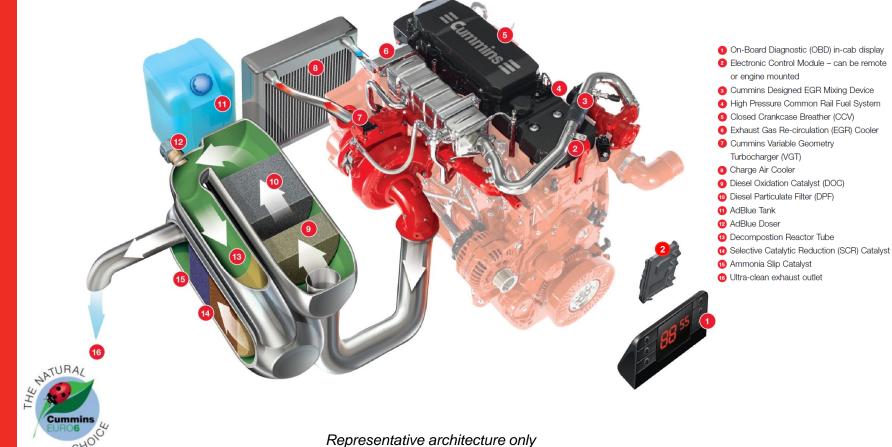
Euro VI / 6 In Use Emissions Comparisons:


	Euro VI	Euro 6 (future)		
PEMS testing program	In-service conformity (ISC)	Real-driving emissions (RDE) ²⁴		
Implementation year	2014	2017 (first step, conformity factor of 2.1)		
Analytical equipment	PEMS	PEMS		
Vehicles tested	In-use	Pre-production ²⁵		
Applicable vehicles	M1/M2/M3; N1/N2/N3 over 2,610kg	M1, N1, N2 ²⁶		
Mandated test frequency	18 months with minimum of 25,0000km and then every two years	Once at type-approval		
Driving shares (% of distance)	Urban (0-50 km/h; 20%-45%)	Urban (0-60 km/h; 29%-44%)		
	Rural (50-75 km/h; 25%-30%)	Rural (60-90km/h; 23%-43%)		
()) () () () () () () () () () () () ()	Motorway (75 km/h+; 30%-55%)	Motorway (90km/h+; 23%-43%)		
Sample size	3 engines per engine family	1 representative vehicle of the "PEMS test family"		
Cold start Included	No ²⁷ (analysis starts when coolant temp >70°C, when engine coolant is stabilized within +/-2K, or 20 minutes whichever is first)	Current regulation states analysis starts when coolant temp >70 °C or 5 minutes, whichever is first. Currently proposed regulation includes analysis of cold-start data		
NO _x Conformity factor	1.5	2.1 (between 2017 and 2020), 1.5 (after 2020)		
Test length	Defined by WHTC work (5x work of WHTC)	90 to 120 minutes		
Payload	50%-60%	2 test operators plus the test equipment, Up to 90% of maximum permissible payload		
Vehicle Preparation	OBD check, replace oil, fuel, reagent	General technical and operational check		
Vehicle Driver	Usual professional driver of the vehicle	Driver supplied by manufacturer or technical service		
Ambient conditions	Atmospheric pressure ≥ 82.5 kPa (altitude of approximately 1700 m), Temperature ≥ -7°C, Temperature ≥ 37.85 °C (at atmospheric pressure of 101.3 kPa) ²⁶	Altitude \leq 700m. Temperature \approx 3 °C. Temperature \leq 30 °C. For "extended" ambient conditions of altitude between 70-0-1300m and temperatures between -7°C to 3°C and 30 to 35 °C emission during this time interval are divided by 1.6		

Currently Diesel Passcars emit significantly higher NOx in real driving conditions whereas HDVs exhibit strong in-use compliance. This is something to do with RDE process implied. http://www.theicct.org/sites/default/files/publications/Euro-VI-versus-6_ICCT_briefing_06012017.pdf

Understanding real vehicle operation

- Euro VI In Use Emissions are very, very low
- Need to ensure compliant emissions on all duty cycles
 - Need to keep this curve 'flat'
- Drives architecture choice

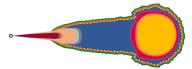


Architectural Choices and Future Scope

Euro VI System Typical Architecture:

Integrating Critical Subsystems:

Valvoline Cummins



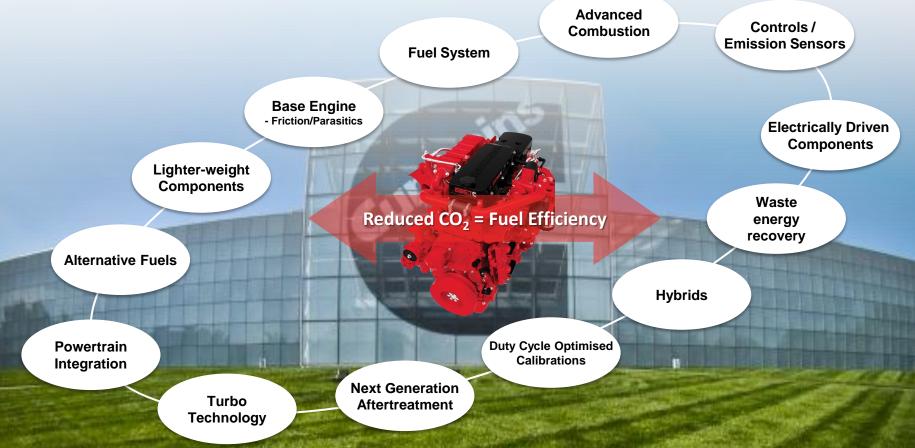
Cummins Emission Solutions

Electronic Controls

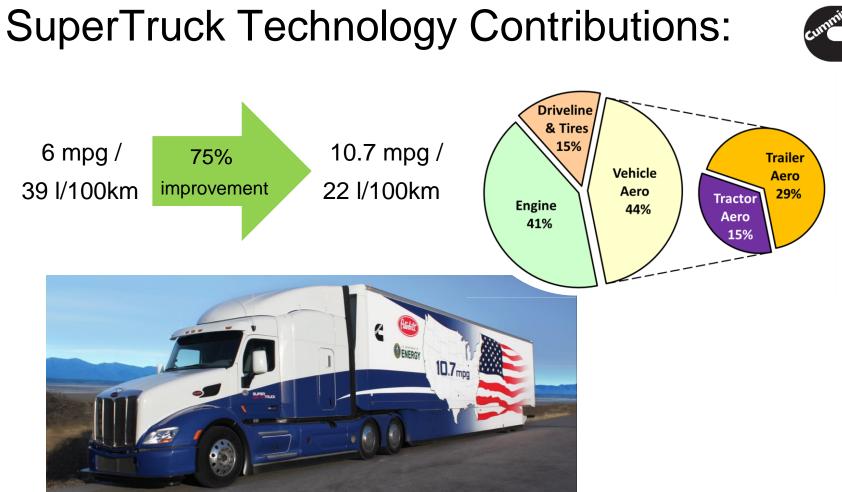
Combustion Technology

Cummins Turbo Technologies

Cummins Fuel Systems


Technology Selection:

The broadest technology portfolio of any engine company


Applio	cation	Date	In-Cylinder Only	Cooled EGR / VGT	NOx Absorber	SCR	Diesel Particulate Filter	Compact Catalyst
Tier 3 / EU Sta	ge IIIA	2005	•					
EPA Tier 2 > 7	51 hp	2006	•					
Euro IV On-Hi	ghway	2006				•		
EPA 07 On-Hig	ghway	2007		•			•	
EPA 07/10 Pic	kup Truck	2007		•	•		•	
Euro V On-Highway		2009				•		
EPA 10 On-Hig	ghway	2010		•		•	•	
Tier 4 Interim/ Stage IIIB	174-751 hp	2011		•			•	
	75-173 hp	2012		•				•
Euro VI On-Hig	ghway	2014		•		•	•	
Euro VI / BS VI / NS VI Alternate Architecture		2020				•	•	

Looking Beyond Euro 6

Reducing Fuel Consumption / Green House Gases (CO₂)

Technologies for 50% Engine Thermal Efficiency:

Combustion & Air Handling

- Piston bowl size and shape
- Injector specification
- Calibration optimization
- Turbocharger efficiency
- Aftertreatment optimization

Parasitic reductions

- Shaft seal
- Variable flow lube pump and viscosity
- Geartrain
- Cylinder kit friction
- Cooling and fuel pump power

52% **Brake Thermal Efficiency** 48% 46% 44, 42% Aftertreatment Exhaust WHR Coolant WHR DoE Friction & Baseline Parasitics Combustion **Air Handling**

WHR system

- EGR, exhaust, recuperator
- Turbine expander
- Low GWP refrigerant

SuperTruck Efficiency Improvement Results

Conclusion:

- Diesel engines has potential to remain choice of powertrain in long run for heavy duty applications owing to it's in use compliance, ultra low emissions and higher thermal efficiencies.
- Diesel engines will improve further with advent of technology in aftertreatment systems, waste heat recovery etc.
- Passcars with Diesel Engines has strong potential to be inline with HD Diesel application from in-use emissions perspective. On- road RDE cycles need to be defined in order to achieve this.

Questions

