Environment Friendly Fuels & Lubricants: Indian Trends

Dr SSV Ramakumar Director (R&D) IndianOil Corporation Limited

ECT 2017 – November 2nd, 2017, New Delhi

✓ Demand & Growth Projections

- ✓ Emission Norms
- ✓ Fuel Quality Up-gradation
 - Technologies & Challenges
- ✓ Fuel Economy
 - Multi functional Fuel Additives
 - Fuel Efficient Engine Lubricants
- ✓ Recap

Primary Energy Demand-2030

Growth of Indian Automobile Industry

Source: SIAM, Booz & Company

✓ 24 million vehicles produced in 2015-16 of which
 ✓ Share of two wheelers, passenger vehicles, three wheelers and commercial vehicles were 78%, 15%, 3% and 4% respectively
 ✓ Automotive Mission Plan 2016 envisages a 3.5 – 4 times growth from

- current levels by 2026
- ✓ Contribution of 7% towards GDP

Consumption Trends - India

- India witnessing a robust gasoline demand
- Relatively flat Diesel trajectory being observed for past 4 years
- Downward trend in Diesel to Gasoline consumption ratio

Fuel Matrix: Demand Supply Gap (HSD/MS/LPG/ATF/SKO)

Demand projections as per MD data & Production figs as per IOCL/ Industry Data

Energy of India

Chronology of Indian Gasoline Specs.

Fuel Characteristics	India 2000	BS-II 2002	BS –III 2005	BS IV 2010 NC <u>R</u>	BS VI
				2017	2020
Density Kg/m3 @15ºC	710-770	710-770	720-775	720-775	720-775
Sulphur Content, ppm	1000	500	150	50	10
RON	88/93	88/93	91/95	91/95	91/95
Motor Octane Number	84 (AKI)	84 (AKI)	81/85	81/85	81/85
RVP, kpa	-	35-60 (35-67)	60(67)	60	67
Olefin Content, %vol	-	-	21	21	21 (18)
Aromatic Content, %vol	-	-	42	35	35
Lead Content, g/l	0.013	0.013	0.005	0.005	0.005
Benzene % vol	3/5	3	1	1	1
Final boiling point deg C	215	215	215	210	210

Energy of India

Chronology of Indian Diesel Specs.

Major parameters:	India 2000	BS-II 2002	BS –III 2005	BS IV 2010 NCR	BS VI
				2017	2020
Density, kg/m³	820-860	820-860	820-845	820-845	845 max
Cetane Number, min	48	48	51	51	51
Sulphur,ppm, max	2500	500	350	50	10
Kinematic Viscosity,cst	2.0-5.0	2.0-5.0	2.0-4.5	2.0-4.5	2.0-4.5
PAH, % mass	-	-	11 (max)	11 (max)	8 (max)
Distillation recovery					
85%	350°C	350°C			
95%	-	-	360°C	360°C	360°C

Emission Norms in India

Heavy duty Vehicles

Trends in Particulate Matter Reductions

Light Duty Vehicles & 2/3 wheelers

BS VI PN concentration for LDVs and HDVs : 6x10^11 p/km
 Particle size from 23 nm to be sampled during the testing

Changing Landscape

Source: SIAM

A collective investment of Rs 80K Cr from BS III to VI (Rs 30 K Cr alone from BS IV –VI) quality up-gradation by OMCs

Energy of India

Typical Gasoline Pool

Sulfu	r within	limi
-------	----------	------

Desired Octane

Process	Pros	Cons
Catalytic Reforming	 High octane (RON 98-104) Low RVP Low sulfur No olefins 	 High aromatics (>70%) and benzene (3- 5%)
FCC	• Moderate octane (RON 89- 93)	 High sulfur (> 300 ppm) High olefins (>25%)
Isomerizat ion	 Better octane than LSR (RON 80-93) Low sulfur, olefins and aromatics 	 Higher investment for increasing octane High RVP (>70 kPa)
Alkylation	 Good octane (90-98) Low RVP No olefins and aromatics 	 Environmental concerns

Typical Diesel Pool

S No	Process Unit	HSD Component	Characteristics
1	Fludised Catalytic Cracking	тсо	Low Cetane, High Sulphur
2	Crude distillation	SRGO	Crude Specific
3	Hydro Cracking	Gas Oil	High Cetane, Low Sulphur
4	Delayed Coking & Visbreaking	Kero/Gas Oil	Low Cetane, High Sulphur

Refining Technology: IOC's Basket

Fuel Economy Improvement & Emissions Reduction - Options

- ✓ Notification of Min. of Power, The Gazette of India, Jan 30th, 2014
- ✓ Average Consumption figures of 2009-2010 as base line
 - □Covers MS,HSD,LPG & CNG
 - □ Applies to Vehicles GVW< 3500 KG
 - Seats 9 max including driver
- \checkmark Average CO₂ targets 130 gms/Kms in 2017 and 113 gms/kms by 2022
- ✓ Compliance Started from April 1st 2017
- ✓Fuel Economy norms for heavy duty/commercial vehicles issued recently by BEE, Ministry of Power
 - •Limits on constant speed fuel consumption for vehicles with GVW >12 tonnes
 - Compliance from 1st April 2018 covering diesel vehicles of M3 and N3 category

- Additive is a fine chemical which modifies the characteristic of Refined Petroleum Fractions
- Additives Provide economical and easy means
 - of Improving Performance
 - Controlling quality during production, distribution, and while the product is in use
 - Impart Properties which are not present in the base fuel
 - Extend the life of the machine and expands the range of application

Detergent & Dispersant	Keep the engine clean and sludge in suspension
Antioxidant	Prevents formation of sludge & deposits, slows down the rate of oxidation of the hydrocarbon
Corrosion Inhibitor	Prevents corrosion /rust on ferrous and non ferrous surfaces
Foam Inhibitor	Minimizes foam formation
Lubricity Additive	Improves lubricity and reduces wear
Cetane / Octane Improver	Improves combustion ability

Heavily Scored Inlet Valve with Untreated Fuel

Clean Inlet Valve with additive treated Fuel

PRODUCT	Treat Level ppm	IVD, mg	CCD, mg	REMARKS
Base Fuel	-	152.7	3421	-
Base Fuel + MFA-1	250	34.0	4300	Good IVD control but higher CCD deposits
Base Fuel + MFA-2	600	7.42	2217	Excellent in IVD & CCD control
Base Fuel + MFA-3	250	2.85	3250	Excellent in IVD & CCD Control

Impact of MFA on Fuel Economy

Both Driving cycle and Constant fuel economy improves by Gasoline MFA

The effect of MFAs is sustainable

Source: IOC R&D

Lubricant Factors Affecting Fuel Economy

Piston & Bearings

 Predominantly operate Hydrodynamic regime
 Reduction of viscous drag from lubricant minimizes friction, leading to fuel economy

Valve Train

- Operates in mixed or boundary regimes
- A good friction modifier in the lubricant formulation may reduce boundary friction leading to fuel economy

Effect of Viscosity

- Viscometrics can affect the level of fuel economy improvement
- Viscometrics are affected by many factors, including high temperature-high shear viscosity (HTHS), kinematic viscosity, shear stability, cold crank viscosity, base oil viscosity index

Source : Lubrizol

Fuel economy improvement by friction modifier type

Note : MoDTC is an acronym for molybdenum dithiocarbamate

- Many components affect fuel economy
- Getting the balance of components right is critical to fuel economy
- Friction modifiers do not all perform the same and must be tailored to the rest of the formulation for optimum results

Fuel Efficient Passenger Car Diesel Engine Oil

Engine Oils	Fuel Economy (kpl)	% improvement w.r.t 15W40	% improvement w.r.t 5W40
SAE 15W40*	18.85		
A5 / B5 5W40 (Industry Ref.)	19.45	+3.19%	
Candidate A5 / B5 5W30 w/o FM	19.81	+5.08%	+1.83%
Candidate A5 / B5 5W30 with FM	19.95	+5.86%	+2.58%

Composite Fuel Economy Benefits in Commercial Vehicles

 Lower Viscosity Grades Engine Oil: API CI₄ + 10W-30 MTF: Dedicated 75W-80 Axle Oil: Dedicated 80W-110
 Huge Benefits to Fleet Operators in Commercial vehicle sector

Test	Type	% Imp. (Engine + Trans. + Axle Oil)*	Automotive Oils	Viscosity grade	ODI
		/ 12	Engine Oil	Cl4 Plus 10W-30	1.5 Lac kms
		7.12	Transmission oil	75W-80	2.4 Lac kms
DBDC Cycle	Hot	4.65	Axle Oil	80W-110	2.0 Lac kms

Added Long Drain Potential

Expected	Details	Existing grade	FE grade
Cost benefits	No of vehicles	4000	4000
to customer	Average km/lt	3.5	3.62
	ODI	1 lacs	2 lacs
Annual cost saving due to fuel only			1.3 crore

3.5-4.7 % improvement in FE in OEM fleet*

*Reference Oils : CI4 Plus 15W-40, Transmission oil 80W-90 & Axle Oil 85W-140

Energy of India

- Fossil fuels to continue as major primary energy source
- Changing product slate Declining HSD:MS consumption ratio
- Increasing environmental concern
 - Stringent fuel specifications
- BS VI fuel quality needs major changes and investments in the refineries
- Fuel Economy is going to impact the future technological choices
- R&D interventions would continue in:
 - ✓ Improved energy efficiency (EII) through:
 - ✓ Refinery technologies
 - ✓ Fuel Additives
 - ✓ Energy efficient lubricants

Thank You

ramakumarssv@indianoil.in