

REAL WORLD DRIVING EMISSIONS (RDE)

Prepared By : HnPE-Regulations (Emission Vertical) © Copyright, Confidential, Tata Motors Limited

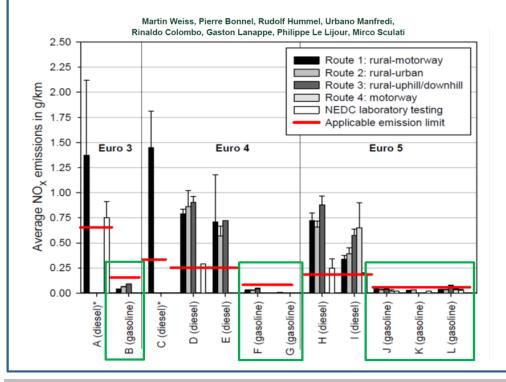
TATA MOTORS

REAL WORLD EMISSIONS IN EUROPE

REAL LIFE TESTING IN INDIA

Prepared By : HnPE-Regulations (Emission Vertical) © Copyright

RDE – WHY DO WE NEED RDE (REAL-WORLD DRIVING EMISSION NORMS) ?

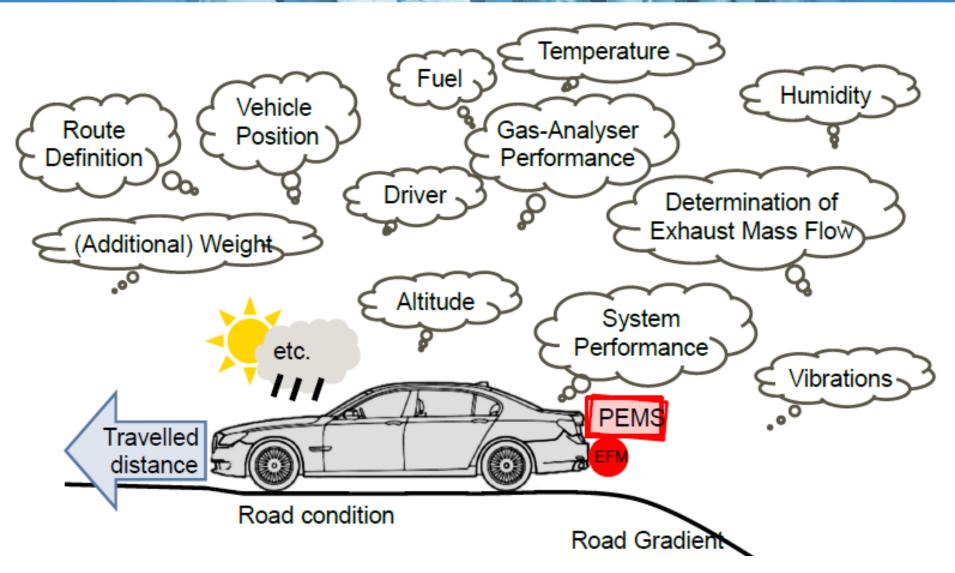

- To address the environmental needs & take action now to enable confidence in Euro6
- COM (EU) 2016/427 Communication A Clean Air Program for Europe
- Completing unfinished business: fixing the light-duty diesel emissions problem
 - "The required reductions have been delivered, with one exception: NOx emissions from light-duty diesel engines."
 - "In its CARS 2020 Communication, the Commission noted the shortcomings of the current procedures and committed to a new test procedure in the type approval framework to assess NOx emissions of light-duty vehicles under real-world driving conditions."
 - "This will ensure the substantial reduction of real-world NOx emissions required to achieve Euro 6 NOx emission limits under normal driving conditions."

ON ROAD EMISSIONS – EU SITUATION

TATA

Analyzing on-road emissions of light-duty vehicles with Portable Emission Measurement Systems (PEMS)

Problem A	rea :
Diesel	: Yes
Gasoline	: No!


Studies by JRC suggest that Gasoline vehicles show emissions within regulatory limits even when tested on road. For Diesel Vehicles emissions are higher

For Diesel On road emissions are upto 14 times higher as per recent T&E reports

RDE: WHAT WE GAIN

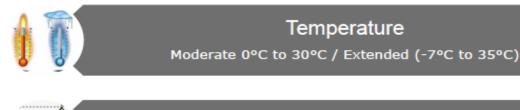
FUTUREADY

Prepared By : HnPE-Regulations (Emission Vertical) © Copyright, Confid

© Copyright, Confidential, Tata Motors Limited

Source: BMW

RDE: REAL DRIVING EMISSIONS IN EUROPE


Real Driving Emissions

- Emission testing under normal conditions of use in real world driving
- Portable Emission Measurement System (PEMS)

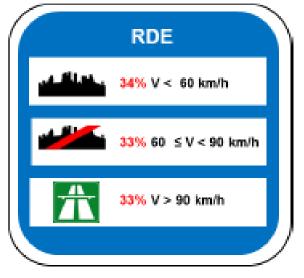
□ CO2, CO, NOx and PN

□ Exhaust flow rate, Speed and GPS data

RDE Test Procedure

Altitude Moderate < 700 m / Extended < 1300m

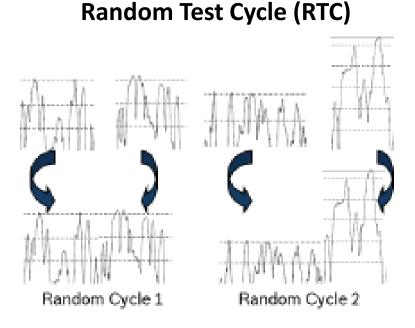
Trip / Driver / Dynamics


City (34%) / Rural (33%) / Motorway (33%), up to 160 km/h, 90-120 min, min. share of accelerations

no "empty" vehicle, <90% payload, heating or air condition on

Load

Prepared By : HnPE-Regulations (Emission Vertical)



Portable Emission Measurement System (PEMS)

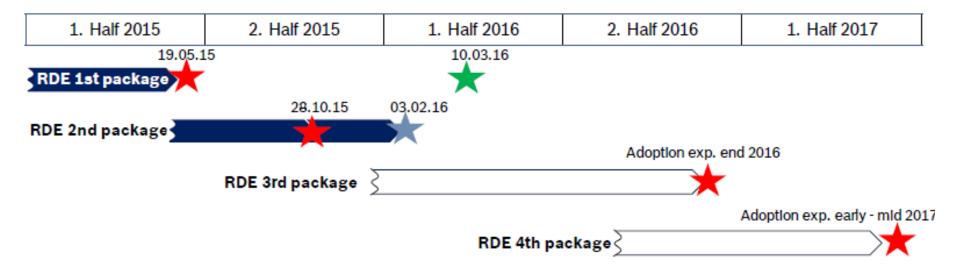
Real on-road driving

- On-board measurement
- Wide range of boundary conditions

- Vehicle dynamometer measurement
- Randomized cycle based on EU-database

TATA

RDE Regulation/Development split into 4 packages

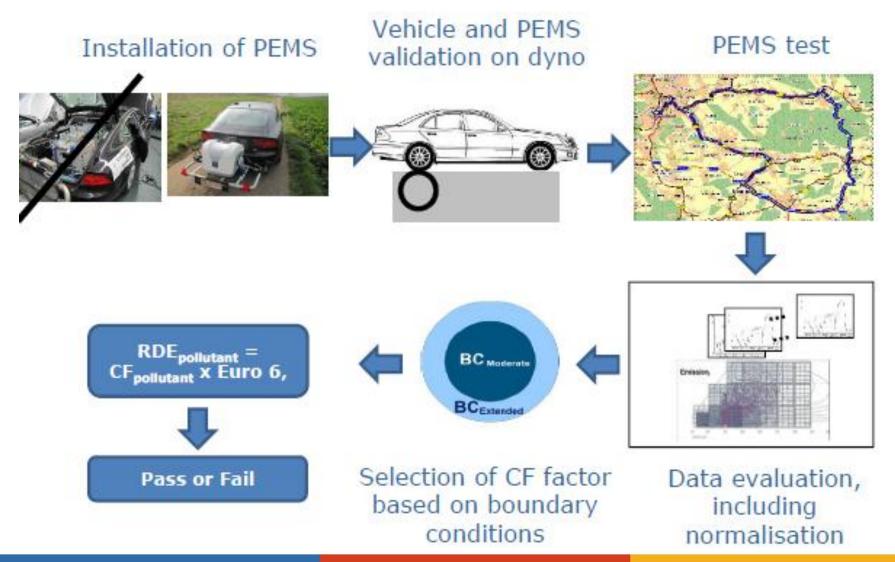

1 st Package	 PEMS test procedure and test equipment Boundary Conditions Data evaluation methods (EMROAD / SPF formerly known as CLEAR)
2 nd Package	 Introduction dates Conformity Factor for NOx Additional Boundary Conditions
3 rd Package	 PEMS test procedure and test equipment for PN Conformity Factor for PN Cold start evaluation Special RDE testing conditions for hybrids
4 th Package	 In-service conformity (ISC) testing [Transfer Function]

Source: TCMV_47_19.05.2015; TCMV_51_28.10.2015; DG Growth Work Program

EVOLUTION OF RDE REGULATION IN EUROPE

- 1st Regulatory RDE package published as COM Regulation (EU) 2016/427
- 2nd Regulatory RDE package was adopted and is currently in process of being published as COM Regulation
- 3rd & 4th Regulatory RDE package in processing

RDE – REGULATION STATUS


		2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	New Model	Euro 6 Introduction (Sept'14)			1s toring : NA)	it Sept 1st St (CF :2	•	1st Jan	2nd Step (CF : 1.5)			
EU	All models	1st Sept1st Jan1st Step2nd Step(CF : 2.1)(CF : 1.5)										

Vehicle Classes M1 & N1	CF (NOx-moderate)	NTE (M1, CI) (NOx-moderate)
Euro 6d – Temp – 1 st Sep 2017	2.1	168mg/km
Euro 6d – 2 nd Sep 2020	1.5	120mg/km

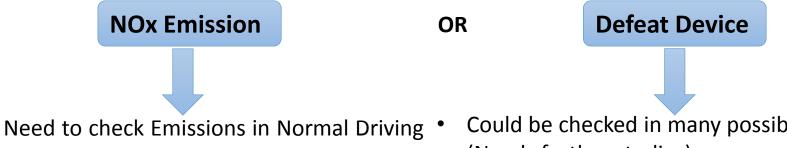
Application of Real-World Driving Emissions (RDE)

BOUNDARY CONDITIONS

- The scope of RDE testing must be defined on a sound scientific and techno-legal basis so that it results in the same stringency of RDE test for all OEMs and such that testing by 3rd parties are within reasonable boundaries.
- This has to be defined by clear unambiguous boundary conditions

IMPLICATIONS FOR RDE

RDE - Technical Integration in vehicle


- Designs for Euro 6c [from Sept 2017] have already been signed off, huge investments have been made, suppliers and contracts are all ready.
- Significant effort to implement appropriate software changes to address RDE can be accommodated in Euro 6c.
- Further significant Hardware changes will be needed to comply with RDE regulation in a second step.

Purpose of Current Proposal for "On Road Tests" by Test Agencies?

- conditions (will anyway be different from Europe)
- Could be checked in many possible ways (Needs further studies):
- Emission Check in a Simulated Test on road

PEMS test a requirement

• ECU Data on OBD may be used for checking

Above two issues are very different and solution need not be same

India needs to define the purpose before preparing a Procedure

RDE ADOPTION IN INDIA

TATA

- Indian Driving / Road conditions / Ambient conditions are different
- Boundary conditions in India need to be defined close to the actual road driving behaviour
- RDE adoption means developing compatible vehicles
 - □ Hardware Development
 - Calibration / Validation efforts
 - □ Verifying the repeatability and consistency of test results
- Adoption of RDE will mean additional efforts beyond BSVI

Situation In India Regarding On Road NOx

- There is no data available. ARAI has done some data collection lately.
- There is a Need to Study : Elaborate Data collection required.
- On Road Reduction of Emissions by implementing BSIV from previous regulations

BOUNDARY CONDITIONS (INITIAL PROPOSAL FOR DISCUSSION)

• RDE based on MIDC

Boundary Conditions	Min	Мах	
Altitude, m asl	0	700	
Temperature oC	15	40	
Accelerations, m/s 2		0.833	
Payload		Reference Mass	
Driving Conditions	City	Highway	
Speeds [km/h]	V ≤ 50 15 < Vavg (including stops) < 30	50 < V < 90	
Max. speed [km/h]	Vmax ≤ 90 km/h		
Min. Distance [km]	16	26	
Trip duration [min]	90 - 120		
Share [of total trip distance]	40% (±10%) Shall never be less than 55%	60% (±10%)	

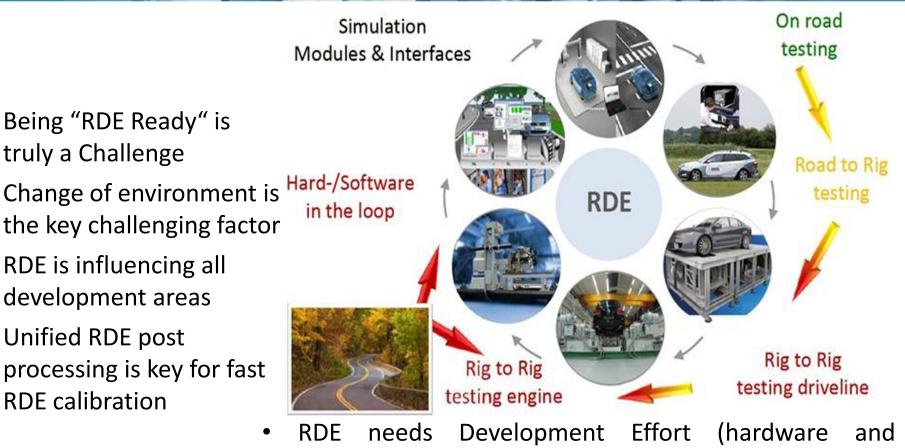
COMPARISON : OPTION1 VS OPTION2

OPTIONS	MERITS	DEMERITS
Option1 (PEMS)	 On Road Emission Measurements 	 Test Accuracy, Repeatability & Validity Issues Equipment Safety and Test Implementation Concerns in Indian Conditions Testing Time and Effort
Option2 (Supplementary Tests)	 Excellent Accuracy & Repeatability Existing Test Equipment Can be used (No additional Investment Required) Possible to Implement faster as Compared to Option1. 	 Capturing Indian Driving Conditions, may be a Challenge

Supplementary Test seems to be a Practical Approach to Implement RDE as a Part of Vehicle Certification.

Being "RDE Ready" is

RDE is influencing all


development areas

Unified RDE post

RDE calibration

truly a Challenge

- Calibration) In view of BSVI timelines it is extremely difficult to do
- additional development within BSVI timeline High Risk to Industry Growth

END OF THE PRESENTATION

Prepared By : HnPE-Regulations (Emission Vertical) © Copyright, Confidential, Tata Motors Limited