

# Advanced Capabilities for Future RDE Compliant Vehicles

Franz Braun, <u>Kevin Brown</u>, Michael Fischer, Philipp Kreutziger, Günter Palmer, Christian Schaefer, Thomas Wolf



Key objective is to develop RDE capabilities to support future vehicle development to comply with in-use emissions requirements

- Only the best of current vehicles have any value as "go-forward" benchmarks for future development
- Essential to develop capability to measure, correlate and differentiate very low NOx/emissions levels, over chassis & in-use routes
  - up to 2021- range of 50 to 100 mg/km
  - after 2021- range of 30 to 50 mg/km
  - after 2025- below 30 mg/km or even <12!</li>



| Region    | Highway Emission Standards                            |                                                                         |                                      | CAR<br>Valu           |
|-----------|-------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-----------------------|
|           | Light-Duty<br>SI & Cl                                 | RDE                                                                     | NOx Level<br>(g/km)                  | (mg)<br>2010          |
| India     | Bharat VI [2020]                                      | Collection 2020<br>CF? Conformity 2023                                  | 60 - 82 SI<br>80 – 125 CI            | 2017<br>Van-          |
| China     | China 6a [2019]<br>China 6b [2023]                    | Collection 2019<br>CF2.1 Conformity 2023                                | 60 - 82<br>35 - 50                   | 2016<br>pick-<br>2016 |
| EU        | EU 6c<br>EU 6d TEMP<br>EU 6d                          | None<br>CF2.1 Conformity 2017<br>CF1.5 Conformity 2020<br>CF1.0? / EU7? | 60 – 82 SI<br>80 - 125 CI            | 2016<br>2013<br>2014  |
| US/Canada | LEVIII [2015]<br>Tier 3 [2017]<br>LEV IV (after 2025) | intent expressed under<br>In-use compliance                             | <120 in 2017<br>12-45 by 2025<br><12 | 2016<br>2017<br>2017  |

#### CARB FTP NOx Certification Values<sup>1</sup> Reported at FUL (mg/km) for diesel vehicles

| 2010 GMC Van- HD                     | ~200 |
|--------------------------------------|------|
| 2017 Ford Transit T350<br>Van- MD    | 186  |
| 2016 GMC Sierra 2500<br>pick-up – MD | 155  |
| 2016 GMC Canyon                      | 58   |
| 2016 Chevrolet Cruze                 | <50  |
| 2013 BMW X5                          | 29   |
| 2014 BMW X5                          | 25   |
| 2016 BMW X5                          | 18   |
| 2017 BMW X5                          | 12   |
| 2017 BMW X3                          | 6    |

<sup>1</sup> Source: https://www.arb.ca.gov/msprog/onroad/cert/cert.php

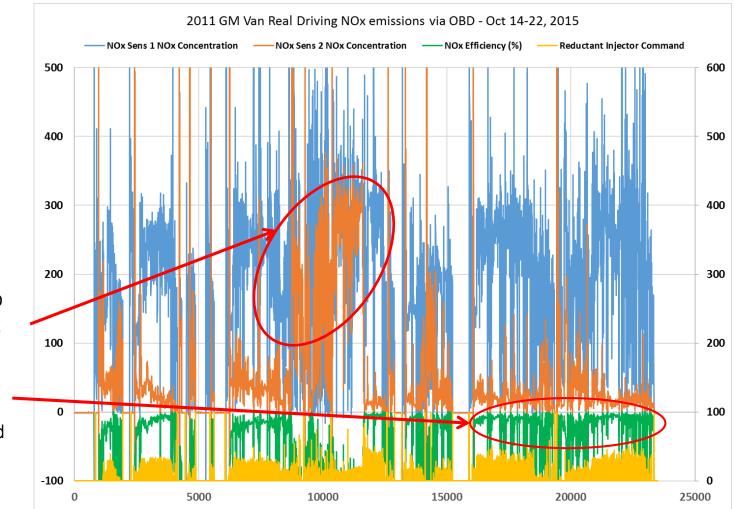
### PEMS & PAMS & Test Cell Protocols



#### • Portable Emission Measurement Systems (PEMS)

- Emissions profile at a point in time
- Impacted by vehicle, engine controls, route, driver, driving style, load, season, weather, altitude, etc.
- Confirms in-use emissions compliance profile via normalization protocol

#### • Portable Activity Measurement Systems (PAMS)


- Additional information provided via OBD and other sensors including engine speed, vehicle speed, load, EGR rate, DPF regeneration, urea dosing rate, exhaust temperatures, etc.
- For vehicles with NOx sensors, can be used to screen vehicles, cycles, over various driving conditions
  - To screen routes for PEMs compliance tests
  - Can be used to monitor for longer term deployment
- PEMS & PAMS can be used to recreate in-use driving conditions of interest in test cells to engineer solutions







## Screening vehicles via PAMS with on-board NOx sensors TENNECO



DPF regen leads to observed Low NOx efficiency

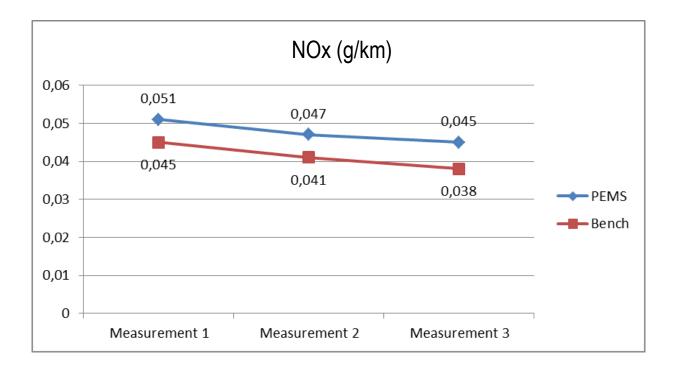
At 120 km/hr, >90% NOx reduction observed

# **Tenneco RDE PEMS Equipment**



#### • AVL M.O.V.E - iS PEMS

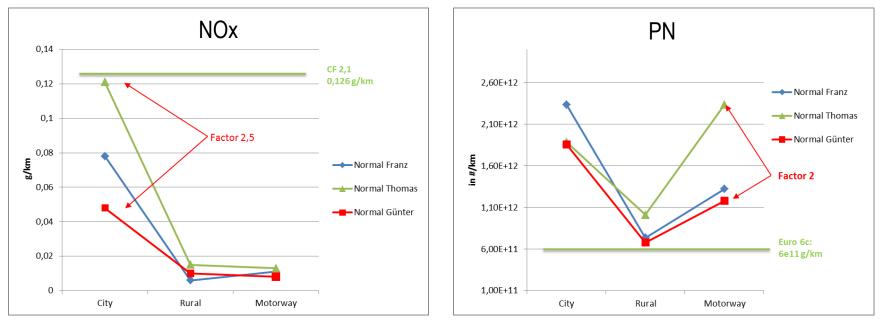
- NO/NO<sub>2</sub> measurement by using an ultra-violet (UV) analyzer
- CO/CO<sub>2</sub> measurement with a non-dispersive infra-red (NDIR) analyzer
- PN via advanced corona discharge principle
- Exhaust Flow Meter (EFM) with exchangeable pipes for high accuracy of 2% of measured value
- Wide operating range (-10°C to +45°C)
- Complete system with EFM arrange on bicycle carrier
- Ambient sensor and GPS mounted on the vehicle roof




#### Also have SEMTECH PEMS equipment



- EU 5 CUV with 1.4L 90kW GDI engine with TWC
- WLTP test cycle on roller bench
- Emission measurement with CVS analyzer into bags parallel to PEMS



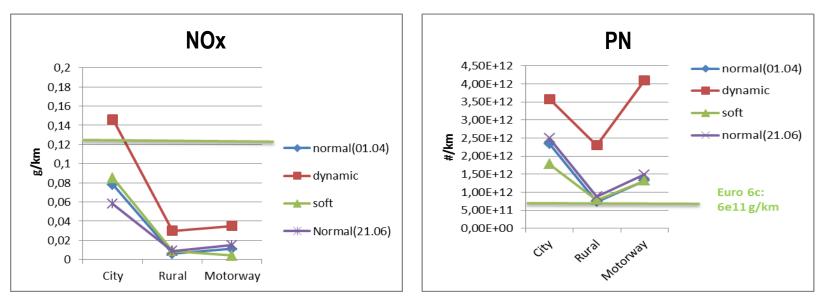



Result: PEMS measured NOx values 6-7 mg/km higher (15% - 20%)



#### EU 5 CUV with 1.4L 90kW GDI engine with TWC




- Results:
  - NOx variation of factor 2.5 during city section; rural and motorway all drivers close together
  - PN variation of factor 2 on motorway
- ➔ Driver influence up to factor 2.5

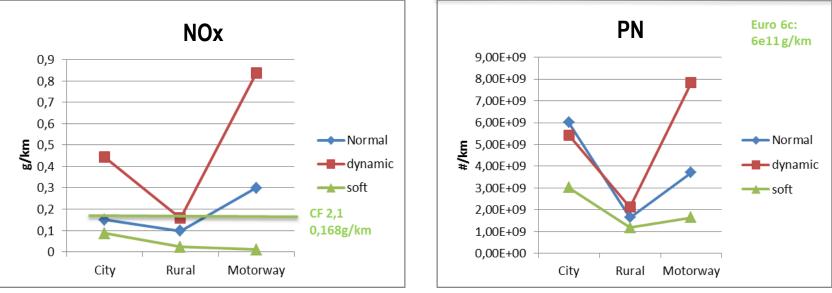


(soft - normal - dynamic/aggressive)



EU 5 CUV with 1.4L 90kW GDI engine with TWC




- Results:
  - Soft and normal driving emission yield similar values with NOx below CF2.1
  - Factor 3.5. difference between normal and dynamic driving
  - Highest NOx emission in the city

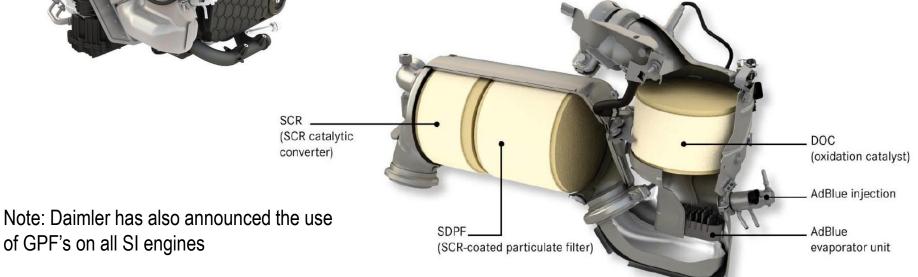
### → Driving style impacts PN up to a factor of 4

### Influence of Driving Style Same route / Same Vehicle / Same Driver / Various Driving Styles

#### (soft – normal – dynamic/aggressive)

EU 6 wagon 2.0L 140kW diesel with DPF & SCR




- Results:
  - Soft drive nearly below NOx limit (CF=1)
  - Moderate driving (city and rural) NOx below CF =2.1
  - Dynamic driving results in sizeable NOx increase
  - PN variation detected but with DPF about factor 100 below 2017 limit
- ➔ NOx greatly impacted by Driving Style



### Example: RDE Diesel Solution New Mercedes E Class EU6 Aftertreatment Module Supplied by Tenneco



- Mercedes E 220 is the first vehicle independently confirmed by DEKRA as 2017 RDE compliant (<80mg/km NOx) over all test routes</li>
- RDE compliance via engine controls, packaging, insulation measures, urea mixing, SDPF and improved catalyst coatings.
- No need for engine temperature management during cold starting or at low load.





- PEMS & PAMS testing of current in-use vehicles can identify best in class vehicles that can be used as benchmarks for development of future vehicles.
- Compliant vehicles will possess better vehicle/engine calibrations, controls, thermal management, and close coupled catalyst systems.
  - Diesel engines will need SDPF's and advanced urea injection & mixing
  - GPF's can resolve PN issues related to GDI engines
  - With RDE based in-use compliance, the key is to develop PAMS and PEMS capabilities that will be able to evaluate future vehicles for PN and very low NOx levels anticipated after 2025.