

Contribution and Role of Off-road Industry towards Better Air Quality

Dr. Anuradda Ganesh

Cummins India Ltd

Emission Control Technology for Sustainable Growth

November 9 - 10, 2016 India Habitat Centre, Lodhi Road, New Delhi, India

Event Organised by:

Emission Controls Manufacturers Association New Delhi, INDIA

Role of Off-road Industry towards Better Air Quality

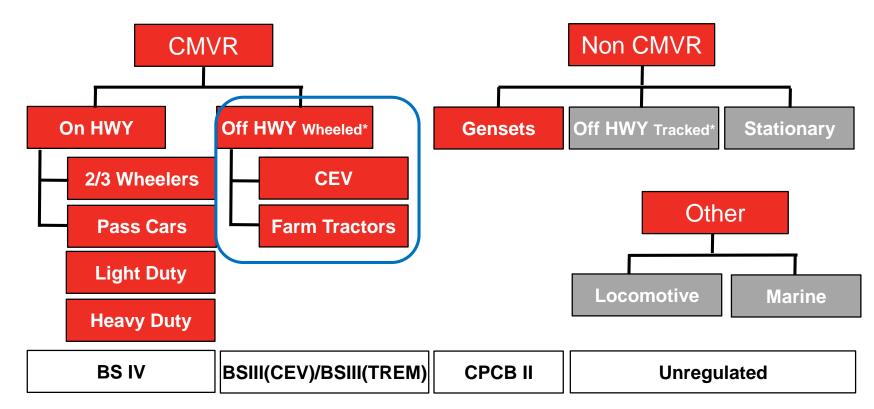
Dr. Anuradda Ganesh

10th November 2016

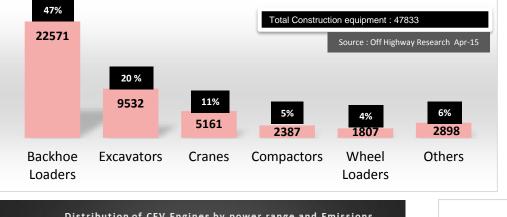
Data Classification: Public

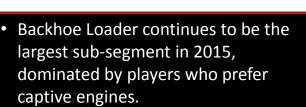
Content:

- Off HWY scenario Global and in India
- Global Off HWY emission norms
- Cummins Emissionised products
- Architectural Options
- Conclusion

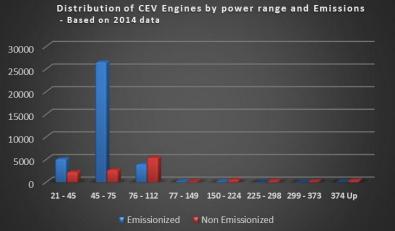


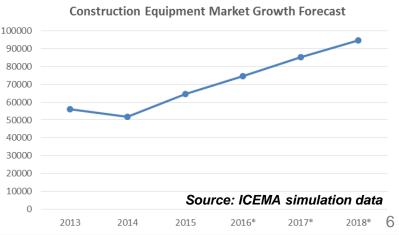
India Off HWY Emission Categories: Non CMVR **CMVR On HWY Off HWY** Wheeled* Off HWY Tracked* **Stationary** Gensets **CEV** 2/3 Wheelers Other Pass Cars **Farm Tractors Light Duty** Locomotive Marine **Heavy Duty** BSIII(CEV)/BSIII(TREM) **CPCB II BSIV** Unregulated


* Although broadly defined as wheeled and tracked, emission exemption applicability may differ 4


India Off HWY Emission Categories:

CEV Market Statistics:


(includes Compact Construction)



• Excavators, Wheel Loaders & Cranes are the growing sub-segments.

Based on 2015 fiscal year data

CEV Applications Share:

Category	Product Family	Overall Share	Emissionized Eqp. Share
	Backhoe Loaders	52.2%	69.3%
	Mobile Cranes	10.4%	13.9%
	Compaction Equipment	5.6%	7.5%
CEV's	Wheeled Loaders	3.8%	5.0%
(Emissionized)	Asphalt Finishers	1.7%	2.2%
	Skid-Steer Loaders	0.9%	1.2%
	Motor Graders	0.6%	0.8%
	Wheeled Excavators	0.0%	0.0%
	Crawler Excavators	21.9%	
Non CEV's	Crawler Dozers	0.9%	
	Mini Excavators	1.1%	0
(Non	Rigid Dump Trucks	0.7%	U
Emissionized)	Articulated Dump Trucks	0.0%	Growth in revenues from cons (USD billion
	Crawler Loaders	0.0%	12

Based on 2014 product mix

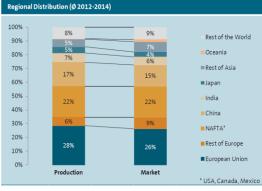
FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 F Source: The Boston Consulting Group, TechSci Research Notes: CAGR - Compounded Annual Growth Rate, FY - Indian Financial Year (April-March), E - Estimate

4.2


CAGR: 13.1%

3.9 4.3 4.6

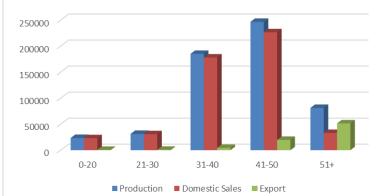
3.7


0

Agricultural Tractors:

Data Source: Tractor manufacturers Association (http://tmaindia.in/consolidated-

monthly-reports.php)



Source: VDMA, own calculations and estimation

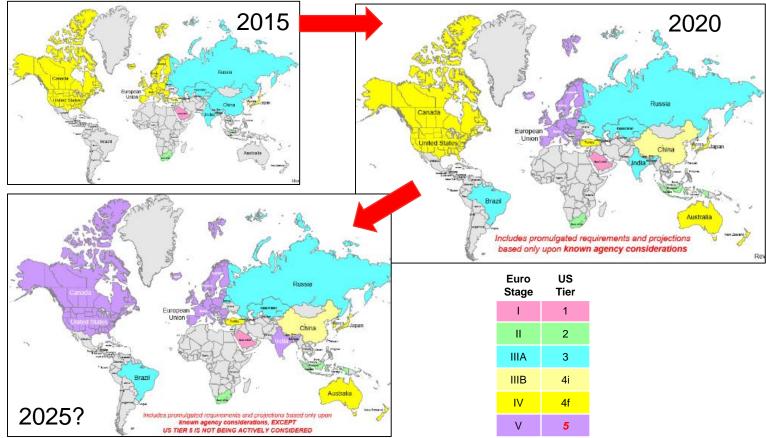
Global On & Off HWY Future Emissions:

Cummins View on Future Emissions:

Mexico

* Draft dated 17th October 2016

Under discussions


Public

Pattern indicates the current applicable regulations in the region

Based on visibility and limited understanding of future emission norms

Non-road Emission Regulations (49-751 hp)

Global Non-Road Emissions:

EUROPEAN UNION	l count/kV	Vh] (I	NOx+ <mark>THC</mark>)	/ CO / PM	(g/kWh) /	[PM count/	/kWh]									
kW	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
kW < 8							(7.5)/8.0/0.40 (0.6 PM for certain hand-startable engines)									
8 ≤ kW < 19							(7.5)/6.6/0.40									
19 ≤ kW < 37	(7.5)/5.	5/0.6														
37 ≤ kW < 56 (a)	(4.7)/5.0	(4.7)/5.0/0.4 (a) (4.7)/5.0/0.025 (4.7)/5.0/0.015/[10^12]														
56 ≤ kW < 130 (b)	(4.0)/5.0) / 0.3 (b)	3.3 / 0.19) / 5.0 / 0.0)25 <mark>0</mark> .	4 / 0.19 /		0.4 / 0.19 / 5.0 / 0.015 / [10^12]								
130 ≤ kW ≤ 560	(4.0)/3.	2.0 / 0.19	/ 3.5 / 0.0)25	0.4 / 0.19	/ 3.5 / 0.0		0.4 / 0.19 / 3.5 / 0.015 / [10^12]								
kW > 560								3.5 / 0.19 / 3.5 / 0.045 (c)								
	Stage IIIA		Stage IIIB					Stage V								

(a) The power category for Stages I-IIIA was $37 \le kW < 75 kW$

(b) The power category for Stage I-IIIA was $75 \le kW < 130 kW$

(c) Non genset standards shown. Genset standards will align with US genset standard of 0.67 / 0.19 / 3.5 / 0.035

Constant-speed engines: All were at Stage IIIA by 2012 and will remain at Stage IIIA until they align with variable speed at Stage V

See table on Europe tab for EU member countries

Stage V dates and emission limit values apply to variable speed and constant speed engine. Until Stage V constant speed engines remain at Stage IIIA

UNITED STATES, CALIFORNIA AND CANADA

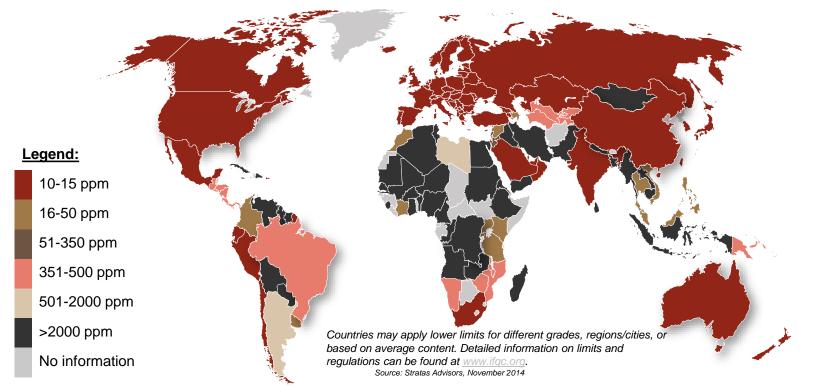
kW	(hp)	201	.0	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
0-7	0-10	(7.5)	(7.5)/8.0/0.40																
8-18	11-24	<mark>(7.5)</mark>	(7.5) / 6.6 / 0.40																
19-36	25-48	(7.5)	(7.5)/5.5/0.30 (4.7)/5.5/0.03											(47)/5	0/0.015/	[10412]			
37-55	49-74	Optio	onal T4i 0.30 PM (4.7) / 5.0 / 0.03										(4.7)/5.	0/0.015/	[10.12]				
56-129	75-173	Tier 3	er 3 3.4 / 0.19 / 5.0 / 0.02 0.40 / 0.19 / 5.0 / 0.02								0.40 / 0.19 / 5.0 / 0.015 / [10^12]								
130-560	174-751	Tier 3		2.0 / 0.19 / 3.5 / 0.02 0.40 / 0.19					19 / 3.5 / 0.02								0.40/0.19/3.5/0.015/[10^12]		
	. 754	T 2		3.5 / 0.40	/ 3.5 / 0.1	.0		<mark>3.5 / 0.19</mark>	/ 3.5 / 0.0)4						2			
> 560	> 751	Tier 2		0.67/0.4	0 / 3.5 / 0	.10 (a)		0.67 / 0.19 / 3.5 / 0.03 (b)						ŕ					
		T2	T3	Ti	ier 4 Interi	m			Fier 4 Fina	I						Tier 5			
		(a) Applies to portable power gen engines > 900 kW (> 1207 hp)																	

(a) Applies to portable power gen engines > 500 kW (> 1207 hp

(b) Applies to portable power gen engines > 560 kW (> 751 hp)

Includes Puerto Rico and US Virgin Islands

Canadian Tier 4 standards came into effect January 16, 2012


California nonroad standards are the same as the 49-state EPA nonroad standards

Significant Reduction in NOx and PM

Max Sulfur Limits in On-Road Diesel, 2020

China, India, South Africa and Ukraine moving to 10 ppm by this time

BSVI fuel under single fuel policy will be enabler for advance Off HWY norms

Emissions Share:

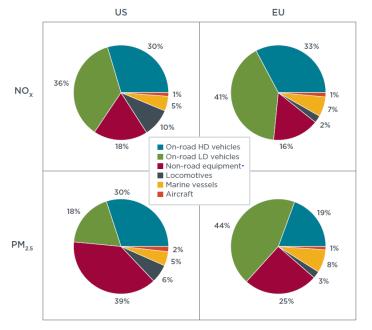


Figure 2. Relative contributions of individual source categories to mobile-source NO_x and $PM_{2.5}$ emissions in the United States and European Union for 2011 (EPA, 2015a; EEA, 2015)

US and EU share of emission by Categories

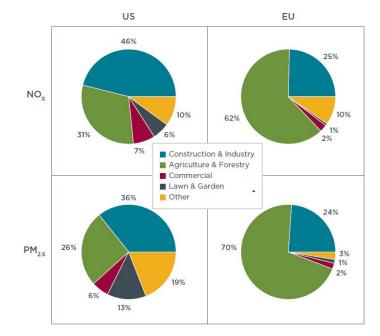
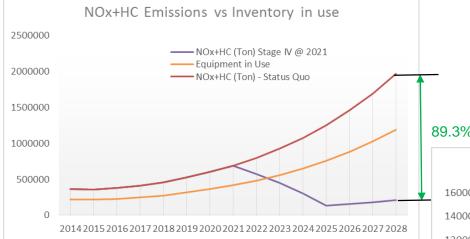
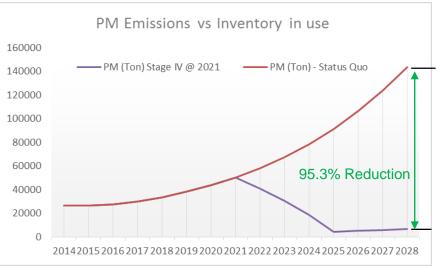


Figure 3. Relative contributions to non-road vehicle and equipment NO_{25} emissions in the United States and European Union by end-use sector for 2011 (EPA, 2015a; EEA, 2015)

US and EU share of emission within Non Road applications

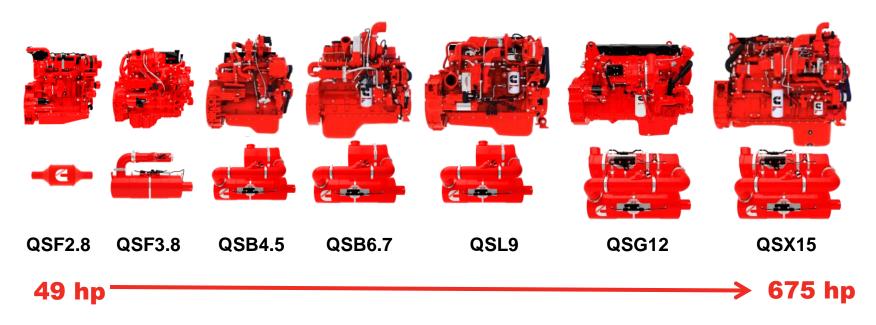

With infrastructure growth plan, India would exhibit similar trends as in EU

CEV Emissions Impact with and Without Stringent upcoming Emissions:



Emissions inventory data simulation based on certain assumptions:

- Equipment Life cycle of 4 years and 12 hours of use per day
 @ 250 days operation totaling 12000 Hrs
- Product mix ratio same as 2014 data assumed for extrapolation
- 16.1% CAGR beyond 2018 (same as average growth in 2014-2018 (E)
- Excluded RTLTs due to data availability


Simulation only to illustrate impact of 'Stage IV' norms applicable across all CEV categories beginning 2021.

89.3% Reduction

Cummins Global Products:

Tier4 Final and Stage IV compliant Engine + Aftertreatment solutions.

Cummins CEV offerings in India

- Optimised Fuel and Lube oil consumption
- Compact and Low weight
- Low noise level
- Standardisation of engine platform
- Built tough for the most demanding conditions like high heat, humidity, dust and cold, all conditions that can
 compromise the productivity of your equipment
- Guaranteed availability, higher equipment uptime through customised service contracts and parts support

Emissionsied products for CEV applications

Cummins Products:

Aftertreatment System Solutions:

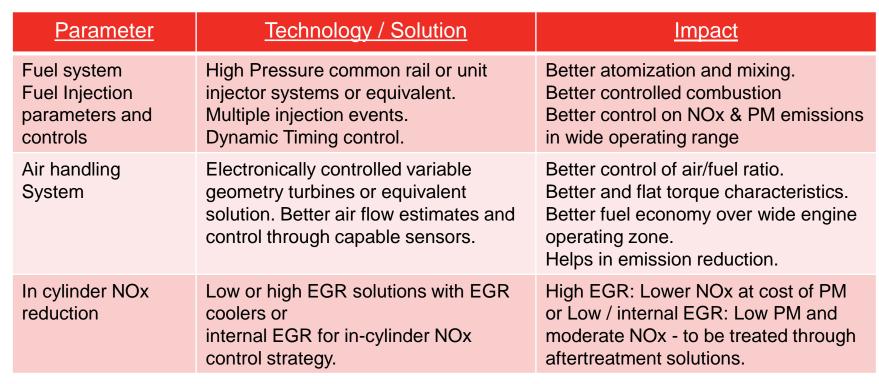
Compact Box Next Gen ATS Introduced with Euro VI

Typical Off HWY Switchback system DOC+SCR configuration shown

Selective Catalytic Reduction

(SCR) Systems Over 1,168,000 units 61.3B miles, 2.21B hours

Diesel Particulate Filter (DPF) Over 1,468,000 units 71.91B miles, 2.60B hours


2010 – 2013 Technology (DOC+ DPF + SCR) Over 586,000 units 27.13B miles, 980M hours

Single Module

Compact and Next Gen ATS Being Introduced with EPA 2017 norms

Architectural Options:

Base Engine Technology:

Architectural Options:

After treatment Devices:

Parameter	Technology / Solution	Impact
PM Reduction	DOC: PM, HC and CO reduction DPF: PM reduction through Passive and Active soot regeneration	DOC converts only Soluble Organic Fraction (SOF) part of PM. Good reduction in HC and CO. DOC is essential for passive and active regeneration of PDF.
NOx Reduction	Vanadia SCR. Zeolite based SCRs - Cu-Z/Fe-Z Urea dosing system Ammonia Oxidation Catalyst (AMox)	NOx reduction: 80 – 95% efficiency Ammonia slip control through aftertreatment system
ATS Controls and OBD	Closed loop controls along with catalyst models. High accuracy Temperature sensors, NOx Sensors, Delta 'P' sensors, PM Sensors	Optimal Ammonia dosing. Ultra high efficiency NOx conversion. Better soot load management. Aftertreatment system protection. Effective conversion efficiency over lifecycle.

Conclusion:

- World harmonized norms such as 'Stage IV' should apply to CEVs and agricultural tractors including currently exempted categories not too delayed from BSVI implementation.
- CPCB III norms can be aligned with proposed CEV emissions leveraging technology and common development efforts.
- Stationary applications should be brought under emissions regime inline with global emissions initiatives.
- Marine norms are also critical to be looked at and regulated, particularly 'inland' category owing to government initiatives of utilizing waterways more effectively.
- Non road machines have significant potential to curb air pollution further.

Need Tough, Clear and Enforceable emission Norms