

BS-VI Norms for Two/Three Wheeler After treatment approach

Prashant R Daggolu SÜD CHEMIE INDIA PVT. LTD. (A CLARIANT Group Company)

SÜD CHEMIE is now a CLARIANT group Co.

CLARIANT, A globally leading company in specialty chemicals

CLARIANT focuses on creating value through innovation and sustainability.

Corporate Center, Pratteln, Switzerland

Contents

- 2W Segment
 - Market
 - Impact of BSVI Norms
 - Expected After treatment System
 - Challenges and Approach
 - OBD-II
- 3W Segment

Similar sub sections as above

Indian 2W Market

- High Volumes
- Smaller Engines (move to performance and sporty bikes)
- High Fuel efficiency conscious
- Lean tuned vehicles
- Low speed driving
- Move to electronic based systems

BS-VI Norms for 2W

Vehicle Class	CO, g/km	THC, g/km	NOx, g/km	NMHC, g/km	THC (NMHC) + NOx, g/km*	PM, g/km	EVAP g/test	Durability (km)
All Classes	1.0	0.10	0.06	0.068	0.16 (0.128)	0.0045**	1.50	35K
DF	1.3	1.3	1.3	1.3	1.3			
BS-VI (with DF)	0.77	0.077	0.046	0.052	0.123 (0.098)			
BS-IV (inbuilt DF); class 2.1	1.403	-	0.39	-	0.79***	-	2/6	
Reduction, %	45	-	88	-	84 (89)	-		
OBD-II	1.9		0.3	0.25		0.05		

*Does not have norms - only for evaluation

**For GDI engines only

*** This is for evap norm of 2 g/test. If evap norm of 6 g/test is chosen; then THC +NOx norm shall be 0.59 g/km

In general, about 90% of Engine out THC emissions of 2W are NMHC; Hence NMHC limit more applicable – making it more stringent

WMTC-Class 2.2

WMTC-Class 3.2

Effect of A/F on Engine out emission and Catalyst conversion Efficiency

Close Loop System and Catalyst Efficiency

Performance of TWC Catalyst is improved with Fuel Metering Control – Narrower the lambda band the better

Challenges and Approach

- Separate Norm for HC and NOx
- Separate NOx limit may lead to a reduction in fuel efficiency
- Stringent NMHC norm has been introduced
- Tighter Engineering Targets
- Challenges in implementing OBD-II
 - Single cylinder Engine non uniform exhaust flow
 - Fast reaction times (FI and actuators) High RPM
 - Cost sensitive Market

Catalysts for BS-VI Emission Norms

- High activity and selectivity
- Low LOT
- High thermal stability
- High OSC
- Optimum PGM density and ratio
- Judicious utilization of PGM
- PGM Dispersion
- 2 Catalysts required for thermal management
- Available on structured substrates
- NOx is space velocity sensitive: larger and higher cpsi substrate
- Wash coat chemistry
 - PM support interaction
 - Oxygen Storage materials (OSC)
- Wash coating technology
 - Segregated : to minimize potential alloying
 - Layered / Zone
 - Wash coat Properties and Rheology

All Classes

- EFI with Closed-loop (Stoichiometric A/F) control
- May need SAI if engine has to run rich for combustion stability and/or performance
- Three Way catalyst(s)

Typical Reactions on TWC Surface

 $CO + 0.5O_2 \rightarrow CO_2$ $CO + H_2O \rightarrow CO_2 + H_2$

 $HC + O_2 \rightarrow CO_2 + H_2O$

```
NO + CO \rightarrow CO<sub>2</sub> + 0.5N<sub>2</sub>
NO + H<sub>2</sub> \rightarrow 0.5N<sub>2</sub> + H<sub>2</sub>O
NO + HC \rightarrow CO<sub>2</sub> + H<sub>2</sub>O + 0.5N<sub>2</sub>
```


Scheme 1

Scheme 2

- \checkmark Lower light-off temperature and better cold start conversion
- \checkmark Control of emissions at high speed / high temperature
- ✓ Improved conversions of CO, HC & NOx
- Y PGM loading can be lowered

Every layer is :

- Optimized for metal support interactions / devoid of negative interactions
- ✓ Improved utilization of Rh & durability
- \checkmark Specifically targeted to individually abate HC and NOx

Washcoat/PGM Dispersion

High Dispersion catalysts important for better PGM utilization

OBD -2W

OBD systems for emission control shall have the capability of identifying the likely area of malfunction by means of fault codes stored in the computer memory

Monitoring Items	OBD-I (1 st April, 2020)	OBD-II (1 st April 2023)
Circuit continuity for all emission related powertrain component (if equipped	\checkmark	✓
Distance Travelled since MIL (malfunction indicator lamp) ON	\checkmark	✓
Electrical disconnection of Electronic Evaporative purge control device (if equipped & if active)	\checkmark	✓
Catalytic Converter Monitoring	х	✓
EGR system Monitoring	✓	✓
Misfire Detection	Х	✓
Oxygen Sensor Deterioration	X	✓

OBD-II Emission thresholds for BS-VI

Vehicle Class	OBD-II Stage					
Туре	CO g/km	NMHC g/km	NOx g/km	PM g/km		
Class -1 & 2-1	1.90	0.250	0.30	0.050*		
(BS-VI Norm)	(1.00)	(0.068)	(0.060)	(0.0045)		
Class- 2-2	1.90	0.250	0.30	0.050*		
(BS-VI Norm)	(1.00)	(0.068)	(0.060)	(0.0045)		
Class - 3-1 & 3-2	1.90	0.250	0.30	0.050*		
(BS-VI Norm)	(1.00)	(0.068)	(0.060)	(0.0045)		

* GDI Vehicles only

3W - Diesel

3W Market info - India

- Low cost market
- Small Engines, low speeds
- Space constraints
- Most cost effective AFT solution expected
- Major Urban short distance transportation system high volumes
- Can carry 3-5 persons or light freight
- Largely run on Diesel but some on CNG, LPG and Gasoline

3 Wheeler – Diesel Norms

All norms with DF

NOx-PM Trade Off

NOx

NOx PM Trade off – One has to be controlled at the expense of the other

DOC + DPF System – Overview

Challenges

- DOC:
 - Must have low Light Off performance for HC and CO conversion
 - Needs resistance & robust stability against thermal deactivation.
- DPF:
 - High filtration efficiency reqd for efficient soot trapping .
 - Additional CO/HC Clean up functionality a must to avoid secondary emissions during regeneration.
 - High stability against thermal degradation is mandatory for meeting durability /life in field .

DOC + DPF System - Mechanism

SCIL NO2 make Catalyst

SV-70000 /1h

EnviCat[®] DOC: Different PGM Loadings

NOx control Strategies – LNT & SCR

- NOx control is difficult for Lean tuned Engine (Diesel)
- LNT: Also called NSC, stores NOx and reduces during a rich pulse
- SCR: NOx may be reduced by adding an additional Reactant (NH3)

LNT (NSC)

- Lean NOx Trap/ NOx Storage Catalyst
- At low temperature will store NOx and release at High temperature/ Rich Pulse
- Reduction happens during the High Temperature pulse

Selective Catalytic Reduction

DPF Regeneration Strategies

- Active regeneration requires system changes
- HC pulses via engine or into exhaust line is needed
- Electric burners or fuel additives maybe available
- The objective is to burn soot with air

Option 1: DOC + cDPF

Condition: NOx controlled from Engine

- Electronic Fuel Injection
- Calibrate for low NOx (EGR)
- Closed Coupled DOC+cDPF
- DOC for oxidation of CO/HC and NO2 make for passive soot oxidation
- Pressure sensor for OBD-II monitoring and signaling to ECU for late cylinder injection for active cDPF regeneration when needed
- Less penalty on fuel for active regeneration

Option 2: DOC + cDPF + LNT

Condition: NOx reduction requirement of <70%

- LNT Approach
 - Control NOx through LNT
 - Rich pulse needed for Regeneration
 - High PGM loaded catalyst
- The role of DOC and cDPF shall be as before
- Active Regeneration

Option 3: DOC + cDPF +SCR

Condition: NOx reduction requirement of >70%

- SCR Approach
 - Control NOx through SCR
 - Maximum > 90%
 conversion possible
- The role of DOC and cDPF shall be as before

SCR Vs LNT for NOx Conversion

• SCR

- Conversion: >90%
- Non PGM catalyst
- Can be tuned for various operating conditions
- Needs several accessories
 - Adblue Tank
 - Pump
 - Mixer
 - NH3 slip measurement
 - Ammonia Slip catalyst
- Space Constraints

• LNT/NSC

- Conversion: 70% max
- High PGM Loadings
- Best operating temperature of 200 – 450 C
- No Accessories needed
- Rich Pulses needed for regeneration- ECU programed
- → NSC solutions for vehicles up to "Upper Medium" class

3W Reductions - Solutions

	CO	HC	NOx	РМ
Baseline, g/km (No EGR)	0.4	0.1	0.6	0.350
BS-VI norm	0.2	0.1	0.16	0.021
Conversion needed				
To meet norm with DF, %	50	0	72%	95%

With EGR, NOx could be brought down by ~50%, 43% further NOx reduction Needed

Decision Matrix

Final AFT system configuration depends on Engine out emissions

Challenges – Single cylinder & Two Cylinder NA engine

- □ More than 70% of operating points are at full load and peak temperature for an NA single cylinder/Two cylinder engine is ~ 520 °C at an air excess ratio of ~ 1.4; Minimum temperature required regenerating soot in DPF is ~ 600 °C.
- Throttling of NA engine for temperature rise will result in significant reduction of air flow and significant increase in soot emission.

Catalytic Systems

- DOC+cDPF+LNT/SCR
- DOC coated with Pt-Pd based WC
- cDPF with Pt-Pd based WC with moderate PGM
- Both DOC and cDPF to withstand high exotherms
- LNT with high PGM loading

Sud Chemie Product Portfolio

- EnviCat® DOC
- EnviCat® cDPF (Passive Regeneration)
- EnviCat® Catburner (Active Regeneration)
- EnviCat® SCR (VWT)
- EnviCat® Clean up Catalyst
- EnviCat® Hydrolysis Catalyst
- EnviCat® SCR (Zeolite)
- EnviCat® LNT

Facilities @SCIL

 1. Chassis Dynamometer
 2. Horiba Emission Analyser Mexa 7400D & CVS 7100
 3. Synthetic Rig for TWC/DOC/SCR Cat Testing

 4. Catalyst Aging in Progress
 5. Diesel Engine Test Bed – SCR Cat Testing
 6. Horiba Mini Dilution Tunnel MDLT 1303

Conclusion

- 2W
 - Move to TWC
 - EFI closed loop control
 - SAI may be needed (in specific cases)
- 3W
 - DOC + cDPF with Active Regen needed
 - LNT/SCR may play a role on at least in higher inertia vehicles
 - Cost implications have to be studied
- Engine out emissions on BSVI Engines will determine AFT system strategy
- SCIL offers all product ranges

THANK YOU FOR YOUR ATTENTION!!

Meeting BS-VI With CARB Engines

- Tune engine richer to minimize NOx
- Use special reduction catalyst, primarily Rh, to reduce NOx
- Add SAI after reduction catalyst
- Use oxidation catalyst to primarily convert remaining CO and HC
- Issues:
 - Need secondary air injection into muffler
 - Need SAI port and piping
 - Requires two catalysts higher cost

OBD - 3W

OBD systems for emission control shall have the capability of identifying the likely area of malfunction by means of fault codes stored in the computer memory

	OBD II Limit, mg/km
СО	440
NOx	300

Monitoring Items	OBD-I (1 st April 2020)	OBD-II (1 st April 2023)
Circuit continuity for all emission related powertrain component (if equipped	✓	✓
Distance Travelled since MIL (malfunction indicator lamp) ON	✓	✓
Electrical disconnection of Electronic Evaporative purge control device (if equipped & if active)	✓	✓
Catalytic Converter Monitoring	Х	✓
EGR system Monitoring	Х	✓
Misfire Detection	Х	✓
Oxygen Sensor Deterioration	х	✓