

Automotive Catalysts at ECT

November 9th and 10th 2016

Speaker Juergen Quell Senior Technical Sales Manager

BS VI 2 and 3 Wheeler Challenges

- Key Challenges for the Transition form BS IV and BS VI
- Key Parameter for Catalyst Performance
 - Noble Metal
 - Technology
 - Substrate
- Catalyst characterization
 - Light off
 - OSC
 - Lambda-sweep
 - OBD II
- Durability and aging stability
 - Synthetic aging
 - Correlation synthetic and street aging
 - OBD II limit samples

materials for a better life 2

Impact of BS VI and Strategies for 2 / 3 Wheelers Development

The Key Challenges to Move from BS IV to BSVI

Legislation Requirements	BS4	BS6	Comment
CO and HC Oxidation	60-70%	90%	Impact on PGM, Support Material and System layout?
NMHC	Not required	68mg/km	
NOx Reduction	Not required	90-95%	Impact on PGM, Support Material and System layout?
Engine Operating Conditions	Lean	Stoichiometric	Which Engine Operating Conditions are required?
Durability	(30,000 Km)	30,000 km	How to Proof / Display Field Durability?
OBD II (2023)	Not required	OSC/ Detection/ Limit Samples	Transfer from Pass-car to MC?

Key Parameter for Catalyst Performance

Key Parameter for Catalyst Performance Noble Metal and Functionality

Oxidation of HC • CxHy + (x+y/4) O2	→ x CO2 + (y/2) H2O	Pd, Pt, Rh
Oxidation of CO • 2 CO + O2	→ 2 CO2	Pt, Rh, Pd, OSC
Reduction of NOx • 2 NO + 2 CO • CxHy + (2x+y/2) NO • 2 H2 + 2 NO	→ 2 CO2 + N2 → x CO2 + (y/2) H2O + (x+y/4) N2 → 2 H2O + N2	Rh, OSC, Pd, Pt,

materials for a better life 6

Key Parameter for Catalyst Performance Technology and Performance

- A wide range of technologies are available in Market.
- One, Two or Three metal technologies \rightarrow Cost and Performance
- High, Medium and Low OSC technologies \rightarrow Performance and OBD
- Backpressure optimized technologies \rightarrow Power and Fuel Consumption
- High, Medium and Low Aging Stable Technologies \rightarrow Durability

Key Parameter for Catalyst Performance Substrates

- Material, metal or ceramic \rightarrow Thermal behavior
- Volume (Space velocity) \rightarrow Performance, Construction Space
- Cell density \rightarrow Performance, Back pressure
- Substrate Structure \rightarrow Performance, Durability

Catalyst Characterization

Characterise Catalyst Performance

- Light Off Test
 - One of the most important aspects of TWC performance in the WMTC is light off and cold start.
 - The engine bench test is aimed at benchmarking catalyst regarding their light off temperature.
 - This test does however not fully represent the extremely fast temperature transients in a real application. But it allows a quite good characterization of a catalyst (relative comparison)

materials for a better life

Characterise Catalyst Performance

- Lambda Sweep Test
 - The lambda sweep test examines the TWC performance under varying somehow stationary lambda conditions.
 - Lambda is varied from rich to lean and lean to rich step by step. At each lambda plateau conversions of HC, CO and NOx is recorded.
 - 1Hz Lambda frequency: Temperature: 450°C, Lambda amplitude:
 - 3,4% lambda (0,5 AF)
 - 6,8% lambda (1,0 AF)

materials for a better life

Characterise Catalyst Performance

- OSC Testing Lambda Step Test
 - The lambda step test aims at quantifying total available OSC amount after a "static" step change in lambda.

• A correct integration of the lambda signals requires oxygen sensors both upstream and downstream catalyst and an integration between these signals.

materials for a better life

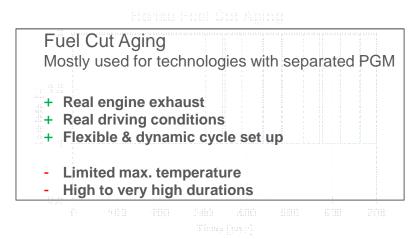
Catalyst Aging

Catalyst Aging

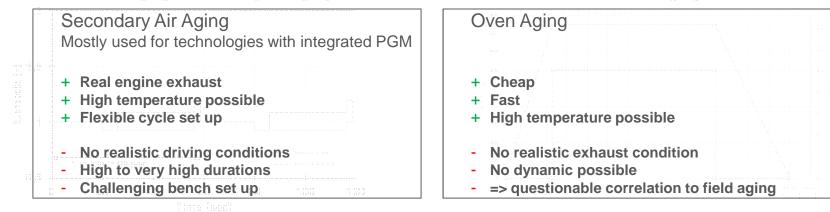
Selection criteria for catalyst aging mode

- Correlation to field aging (severity, profile, ...)
- Realistic temperature / gas conditions
- Reliability and reproducibility
- Cost
- Philosophy

materials for a better life


Catalyst Aging

- Most aging mechanisms caused by thermal exposure are irreversible
 - Sintering of PGM and oxides
- Reversible deactivation is mostly related to some poisons. In such cases moderate heat treatment can restore the initial activity and reverse the deactivation process.
 - Sulfur poisoning or generally precious metal is oxidized or poisoned.


materials for a better life

Catalyst Agings

4 Mode Aging - Secondary Mr Aging

materials for a better life

Thank you!

Automotive Catalysts "Clean air is our business"