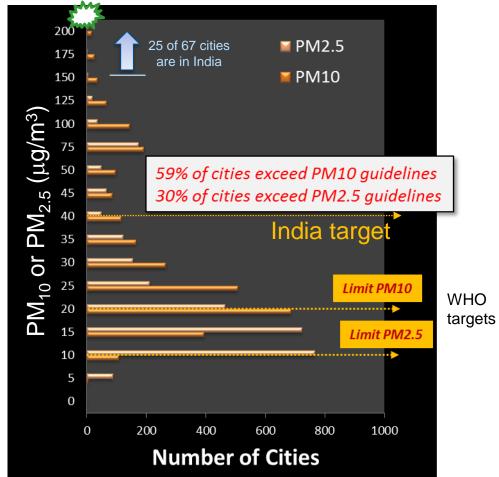

Advanced high-porosity filter technologies to meet BS VI regulations

Dr. Ameya Joshi, Dr. Timothy V. Johnson JoshiA@corning.com JohnsonTV@Corning.com

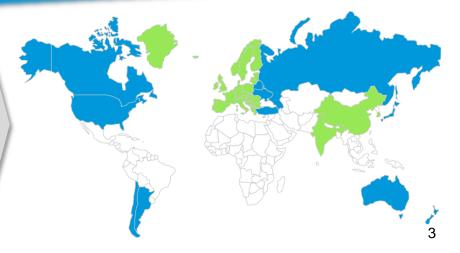
"ECT 2016: Emission Control Technology for Sustainable Growth", 9 – 10 November 2016, New Delhi


Significant advances in past decades towards cleaner air ... yet challenges ahead to reduce particulates, NOx, CO₂

NO₂ concentrations in troposphere

Images from NASA's Goddard Space Flight Center WHO Global Urban Ambient Air Pollution Database ~ 3000 cities, 2012 – 2015

New Delhi PM₁₀ = 229 μ g/m³


CORNING | Environmental Technologies

Particulate regulations expected to drive adoption of DPFs and GPFs globally

	-	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
USA 🙍	EPA	Tier 2			Tier 3 (phase in)								
	CARB	LEV III Phase in							3mg/mi > 1mg/mi				;/mi
EU 🔿			EU6b gdi	PN 6e12#/km	EU6C GDI PN 6e11#/km						CA173		
	Cycle RDE	NEDC		Monitor		WLTC CF 2.1		CF 1.5		CF 1.0		EU7?	
China 🎽	Nation				Diesel China 5 (~EU5) China 6 (~EU6c and ti					ic and tig			
	Beijing	Beijing 5			BJ 6 (LEV III ULEV 70) or CN6b								
India 🔜	Nation	BS III (EU3)				BS IV			BS VI (~ EU6b)		BS VI-2		
	12 Cities			BS IV ((~EU4)	EU4)			B3 VI (~ E000)		GDI PN 6e11 #/km		

Expected needs for particulate filters

Particulate filters have been designed to meet stringent performance needs

Need	Implication			
High filtration efficiency	Engineered pore size & Optimized cell design			
Low pressure drop - Coated, soot/ash loaded				
Maintain catalytic performance	Adequate porosity for catalyst			
Soot management	Wide operating window			
Durability & strength	High strength, low CTE, chemical resistance, etc.			

*Results using Corning's AT filter technology AT-LP = Low porosity for high SML application AT-HP – High porosity for SCR integration

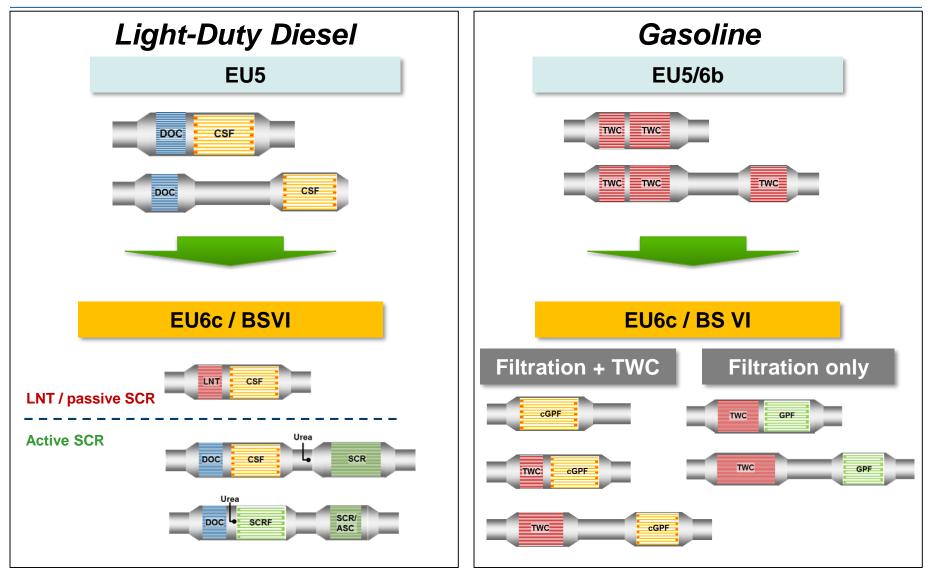
Example* Engineered pore size to meet conflicting requirements of high FE & low ΔP 1.E+12 6×10¹¹/km 1.E+11 NEDC on 2L Euro5 PN (#/km) Engine 1.E+10 Narrow PSD 1.94×10^{9} 1.22×10⁹ 1.E+09 1.E+08 AT-LP AT-HP Fewer large Less fine porosity pores for for low ΔP improved FE Development material ~ 25% Pressure Drop (kPa) ל א Pore Diameter (µm)

0

1

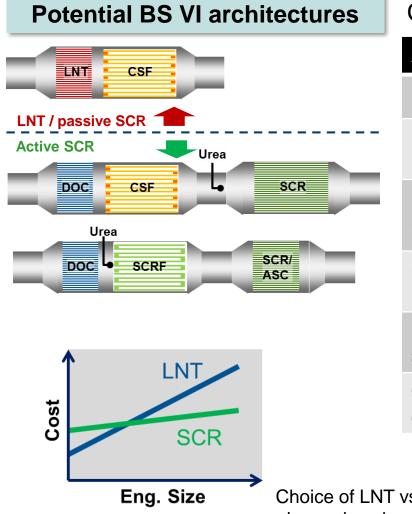
2

3


Soot Load (g/L)

5

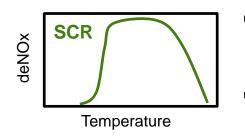
6


CORNING | Environmental Technologies

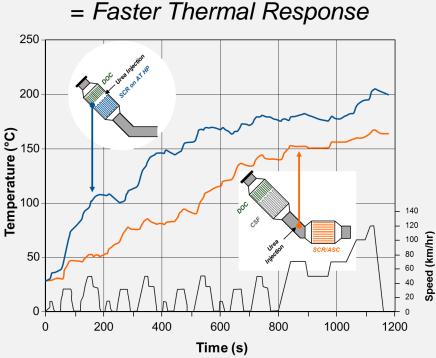
Diesel and gasoline emissions after-treatment systems are evolving to meet Euro6-level regulations

CORNING | Environmental Technologies

LD Diesel Likely BS VI after-treatment solutions



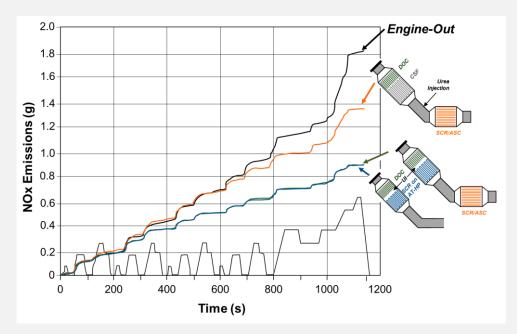
Considerations for integrated SCR on filters


Aspect	Explanation
Better space utilization	Combines 2 components
Less passive regeneration	NO ₂ competition
Lower deNOx @ equal SCR cat. and/or NH ₃	Limited urea decomposition & low NO ₂
System pressure drop	Could be higher at high WCL
Faster heat-up (cold start)	Better deNOx
Cost, system complexity	PGM (LNT), Urea infrastructure, controls

Choice of LNT vs. SCR dictated by engine size & system cost

Integration of SCR on DPF for enhanced deNOx performance

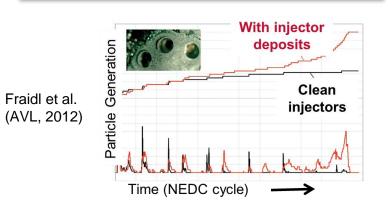
- Challenge with zeolite SCR technology is still improving deNOx at low temperatures (cold start)
- Close-coupled application enables early catalyst light-off and urea injection



CORNING | Environmental Technologies

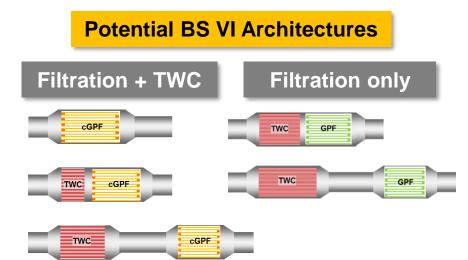
Close-coupled implementation

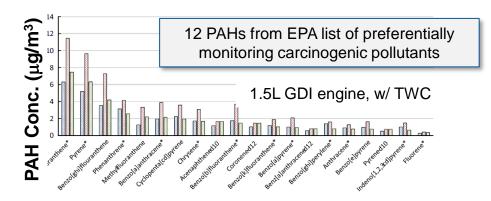
Translates to earlier Urea Injection & Lower Emissions


Results using Corning's AT-HP filter

LD Gasoline

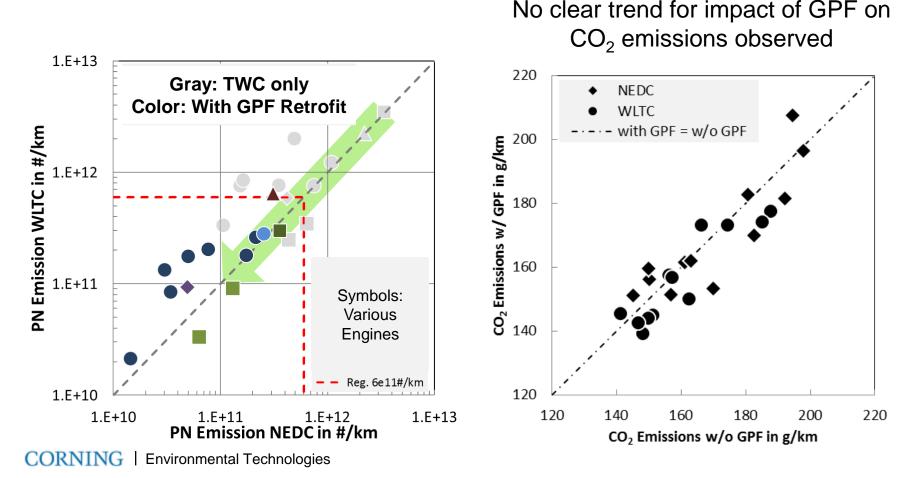
Advanced substrates and particulate filters to meet BSVI regs.

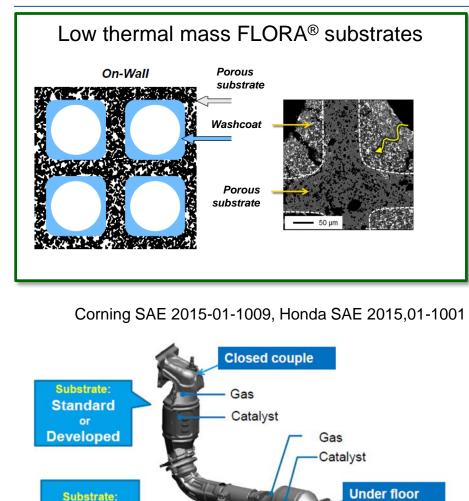

In-cylinder methods are insufficient for maintaining low PN over <u>real world</u> conditions

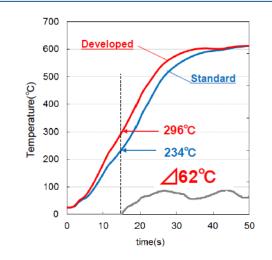

- Variation in speed/load
- Ambient temperature
- Deposits Injectors, combustion chamber, valves
- Production tolerances
- Wear, aging
- Variation of fuel, lube oil quality
- Variability across fleet
- Measurement challenges

CORNING | Environmental Technologies

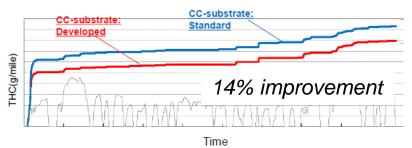
Gasoline Particulate Filters offer a robust solution to minimize tailpipe PN and capture PAHs




Tsinghua & Peking Univ., Fuel, 2016


Extensive vehicle fleet experiments confirm robust filtration performance of GPF with minimal Δp penalty

- PN Filtration studied using large Vehicle Fleet with GPF retrofits
 - 12 GDI vehicles (EU5/6b), Engines 1.4 3.0L, various segments (C,D,E, SUVs)
 - GPFs uncoated and some TWC coated



LD Gasoline Advanced substrates enable early light-off

THC

Standard

Summary

- Implementation of BSVI regulations is an important step towards cleaner air
 - Emissions are typically higher under "real-world" driving conditions, development of RDE and monitoring of in-use compliance is important
- After-treatment solutions exist and have been developed to meet the stringent requirements of reduced gas and particulate tailpipe emissions
- Choice of diesel after-treatment solution (SCR vs. LNT) will depend on engine size, urea infrastructure, control strategy etc.
 - In either case, filters and substrates are capable of meeting the requirements
- BSVI regulations or gasoline implies use of advanced substrates, catalysts and particulate filters for GDI engine (for 6x10¹¹ #/km limit)
 - Extensive testing has shown robustness of GPF technology to meet regulations without significant impact on fuel economy