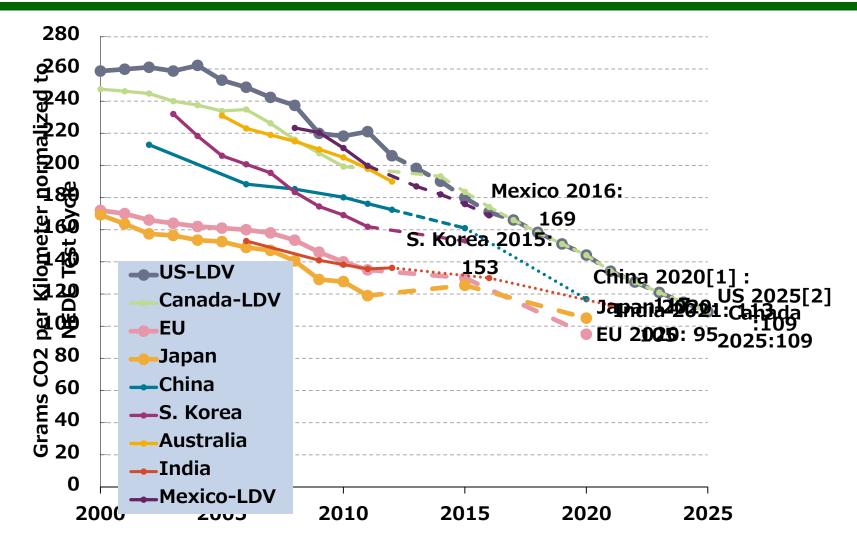
Catalyst Technologies Meeting BS5 and BS6 Norms

Dr Geng Zhang Johnson Matthey Sept. 4th 2015


Content

- Introduction
- Experience of EU5
 - Gasoline
 - Light duty diesel
- Experience of EU6
 - Gasoline
 - Light duty diesel
- Summary

LD Regulations

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
USA				Tier 2					Tie	er 3	
USA (CARB)			LEV II					LE	V III		
EU			Euro 5			E	uro 6b			Euro 6c	
Russia		Euro 3		Eur	o 4			Eu	ro 5		
Japan					J	apan 200	9				
China National		CN 3			C	N 4		CN	۷ 5	CI	۱6
China Beijing		BJ 4	BJ 4 BJ 5					BJ 6			
India - National	BS II		BS III				BSIV?				
India - Cities	BS III	BS III BS IV									
S Korea (Gasoline)	K-L	JLEV					K-SULE\	/			
S Korea (Diesel)			Euro 5					Eu	ro 6		
Indonesia				Eur	o 2				l	Euro 3/4 ?	?
Thailand		Euro 3				Eur	ro 4			Eur	o 5?
Brazil		Euro 3		Euro 4				Euro 5			

FUEL ECONOMY & CO₂ LEGISLATION COMPARISON

Experience of EU5

- Gasoline
 - PGM selection
 - PGM loading
- Light Duty Diesel
 - Pt-Pd DOC
 - Sulfur poisoning

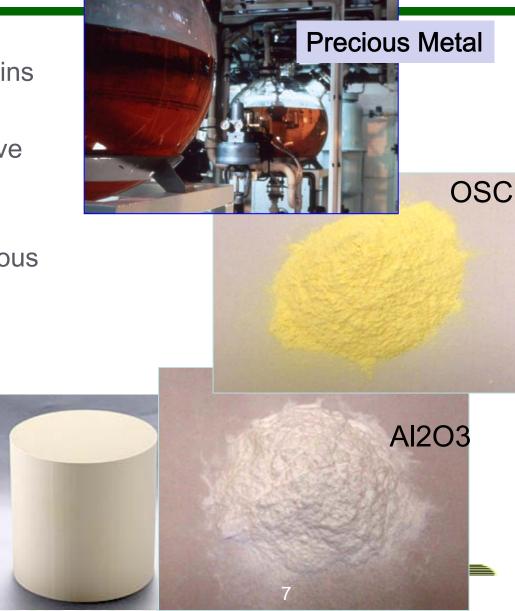
Gasoline

Stage	Date	CO (g/km)	HC (g/km)	NMHC (g/km)	NOx (g/km)	PM (mg/km)	PN (#/km)
4	2005	1.0	0.100		0.080		
5	2009	1.0	0.100	0.068	0.060	5.0/4.5	

Diesel

Stage	Date	CO	HC+NOx	NOx	PM	PN
		(g/km)	(g/km)	(g/km)	(mg/km)	(#/km)
4	2005	0.50	0.30	0.25	25	
5	2009	0.50	0.23	0.18	5.0/4.5	6.0* E11

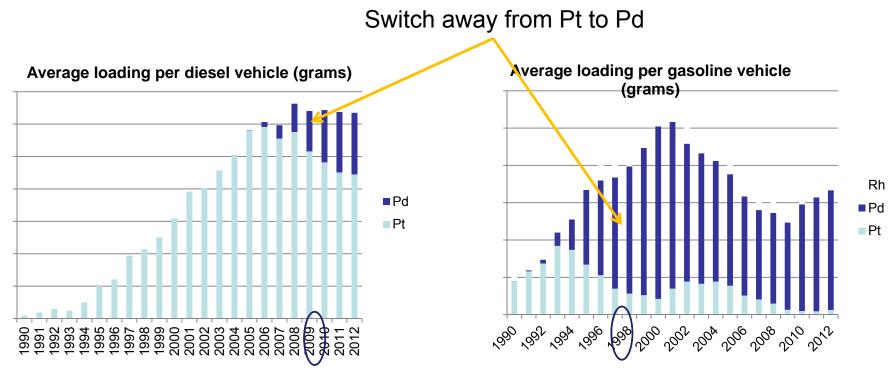
Catalyst Technologies


7

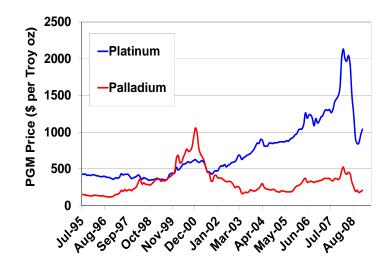
Three-Way-Catalyst(TWC) contains

- Precious metal (PGM) as active components as catalyst
- Al2O3 as the support of Precious Metal (Pt, Pd, Rh)

🛆 Emission Co

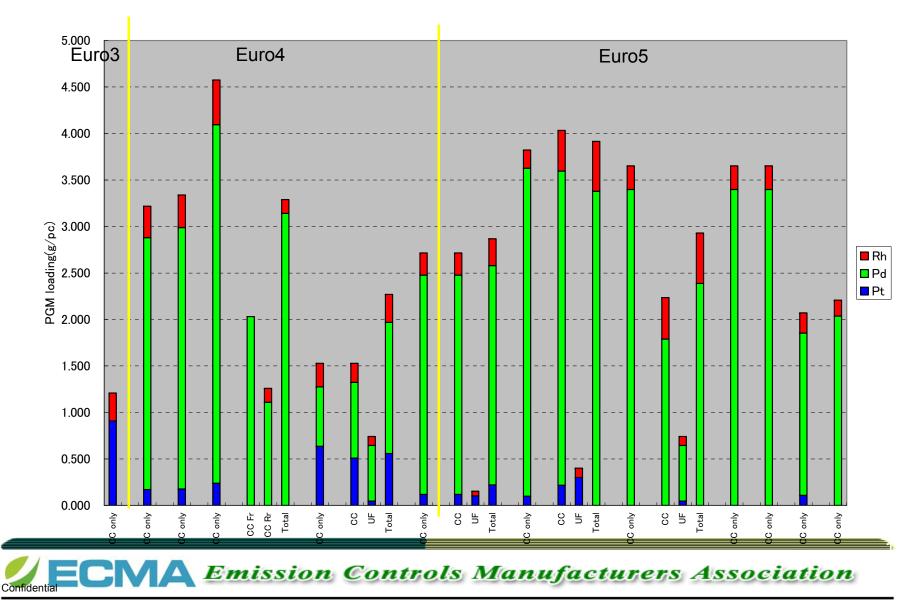

- OSC material
- Additives

Which PGMs have been used and why?


Focus on Europe (Passenger Cars)

Includes vehicles with no catalyst (pre-1992/3)

Pt vs Pd


- Fuel sulphur levels were high in Europe in the early 1990s -1000ppm or more
- Platinum autocatalysts are more sulphur tolerant
 - Especially in lean conditions as for diesel catalysts
 - Sulphur can be cleaned off at high temperatures, as can be found in gasoline cars

PGM loading Comparison

(Engine displacement: 1.0 – 1.5L)

Gasoline

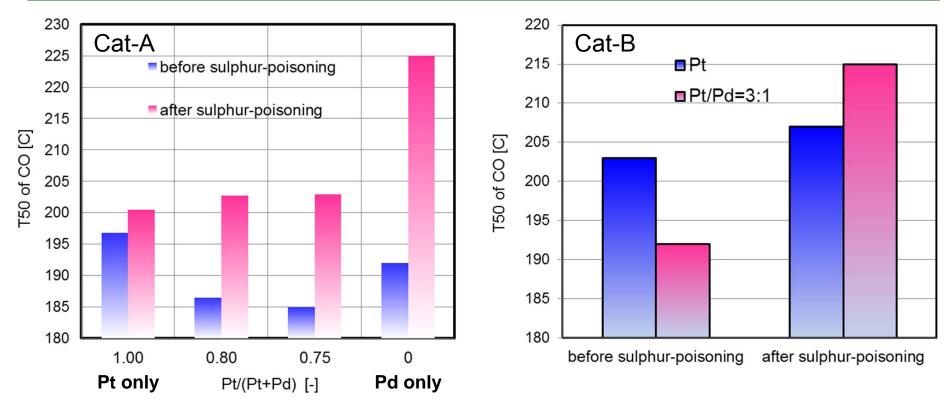
Stage	Date	CO (g/km)	HC (g/km)	NMHC (g/km)	NOx (g/km)	PM (g/km)	PN (#/km)
4	2005	1.0	0.10		0.080		
5	2009	1.0	0.100	0.068	0.060	0.005	

Diesel

Stage	Date	CO	HC+NOx	NOx	PM	PN
		(g/km)	(g/km)	(g/km)	(g/km)	(#/km)
4	2005	0.50	0.30	0.25	0.025	
5	2009	0.50	0.23	0.18	0.005	6.0* E11

LDD EU5 System Technology

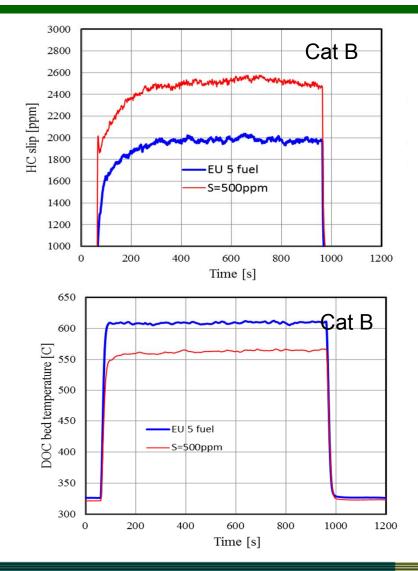
12



DOC: Pt, or Pt-Pd technology

- Oxidize HC and CO for reduction of emission
- Convert NO into NO2 for passive soot regeneration.
- Generate temperature at inlet of CSF for active soot regeneration.

Design Concepts


Sulfation : at 300C, to be 8 g-S/L with 500 ppm S fuel

Sulfation : at 250C, to be 8 g-S/L with 500 ppm S fuel

 All samples were evaluated with EU 5 E/G. Pt/Pd show poorer CO/THC oxidation activity than Pt DOC after S-poisoning.

Verification in Bench and vehicle test

Confidenti

- DOC will need to combust fuel to generate heat for filter regeneration.
 - PGM: 2:1/113.1
 - 750C aged.
- Hi sulfur content fuel is deactivating the activity of Pt/Pd DOC.

Summary-1

EU5 experience

- Gasoline
 - PGM type has been shifted from Pt-Rh to Pd-Rh
 - To potentially reduce cost
 - Technology development effort
 - Inter-changeable of PGM type used in TWC to mitigate price fluctuation in PGM market
 - Lower Sulfur content in the fuel is helpful for adoption of Pd-Rh catalyst.
- Diesel
 - DOC + CSF is the typical after-treatment solution to meet EU5
 - Pt-Pd based DOC
 - Pt-rich DOC for NO2 formation and S-tolerance
 - Pd contributes largely on LO and fuel combustion
 - Low sulfur content in fuel is important to maximize the contribution of catalyst.

dential Emission Controls Manufacturers Association

Experience of EU6

- Gasoline
 - GPF
- Light Duty Diesel
 NAC + SCRF

Emission Legislation

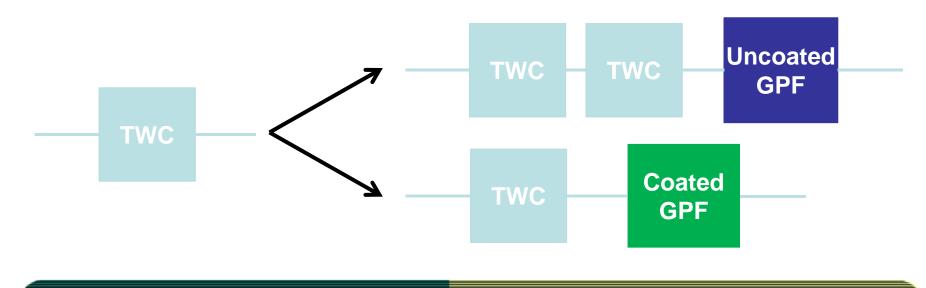
Gasoline

Stage	Date	СО	HC	NMHC	NOx	PM	PN
		(g/km)	(g/km)	(g/km)	(g/km)	(mg/km)	(#/km)
4	2005	1.0	0.10		0.080		
5	2009	1.0	0.100	0.068	0.060	5.0/4.5	
6b	2014					4.5	6x10 ¹² (**)
6c(*)	2017					4.5	6x10 ¹¹ (**)

*) RDE will be introduced.

**) PN limits for DI engine only.

EU6 Regulation


Particle Number limits for GDI engines take effect from 2017

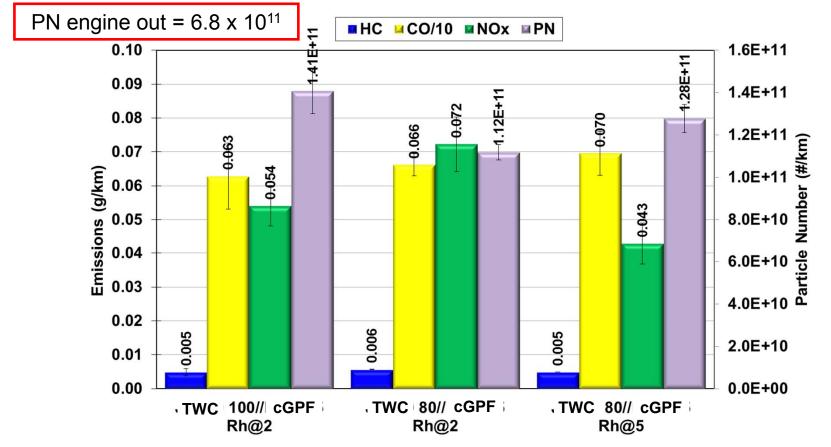
- Euro 6c
 - PN limit reduces from 6x10¹²/km to 6x10¹¹/km
- European Real-World Driving Emissions (RDE)
 - Methodology expected to be confirmed.
 - Conformity Factors and Not To Exceed limits to be decided in 2015
 - PN by PEMS or random drive cycle

Use of coated filters to help meet emissions

- Euro 6c/RDE limits will require
 - Control of PN emissions, and
 - Control of gaseous pollutants over a wider range of driving conditions
- Many Euro 5 systems have been optimised for NEDC testing
 - Beneficial to integrate coating onto filter for Euro 6c/RDE, rather than add both TWC volume and an uncoated filter

Impact of Catalyst Design on Emissions breakthroughs

20

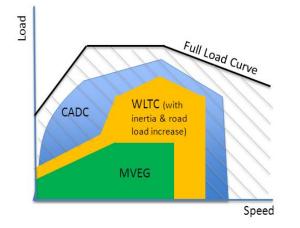

Increasing Rh content of the coated GPF is also an effective method to minimise breakthroughs under transient conditions

- Small (0.5L) TWC with PGM loading of 100 g/ft³ (Rh = 7.5) or 80 g/ft³ (Rh=2)
- Downstream 1.3L, 65% porosity, 300/12 cordierite filter
 - Washcoat loading 100 g/l, PGM loading of 22 g/ft³ (Rh = 2 or 5)
- Testing on 2.0L Euro 5 GTDI vehicle over Artemis cycle
- Lower Rh loading on TWC resulted in significant NOx breakthrough
- Increasing Rh loading on the Coated GPF mitigated the effect

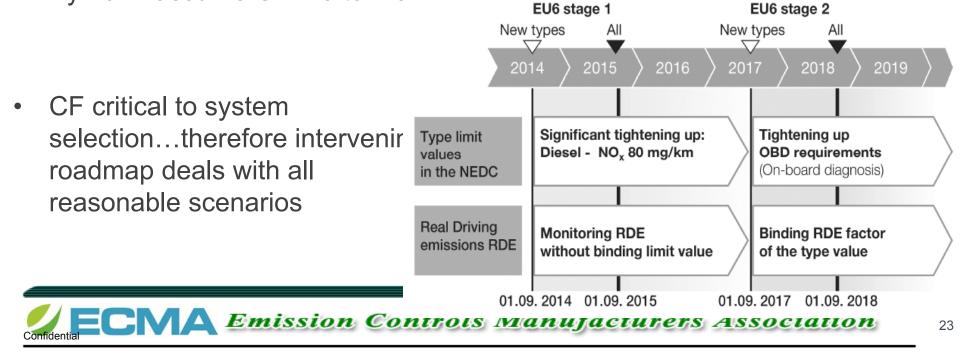
PGM Loading Impact on TWC and Coated GPF 2.0L Euro 5 GTDI vehicle, Artemis cycle

Lower TWC Rh loading gave significant NOx breakthrough, increased Rh loading on coated GPF gave lower NOx emissions

Emission Legislation Diesel


EU6

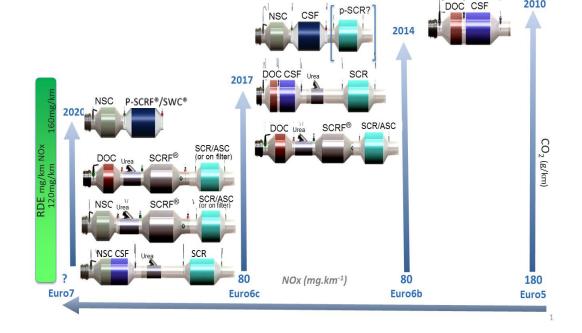
Stage	Date	CO (g/km)	HC+NO x (g/km)	NOx (g/km)	PM (mg/km)	PN (#/km)
4	2005	0.50	0.30	0.25	25	
5	2009	0.50	0.23	0.18	5.0	
6b/c	2014	0.50	0.17	0.080	4.5	6x10 ¹¹



Legislation Requirements & Trends

- Euro 6c adds Real Driving Emissions
 - NOx main challenge
 - Conformity Factors TBD

• By 2021 assume CF 1.0 to 1.5



Eligible Roadmap to Europe 2020 Severity of RDE

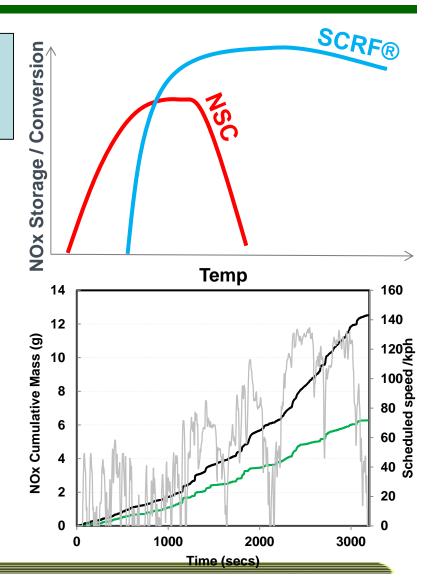
Close-couple (except slip • cat)

e T С С n

- NSC-only possible for less demanding scenario (CF>1.5)
- NSC + SCRF® for most demanding scenario

ECVA Emission Controls Manufacturers Association

2010

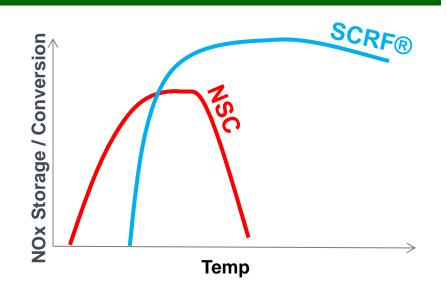

NSC for a-SCR(F) Requirements

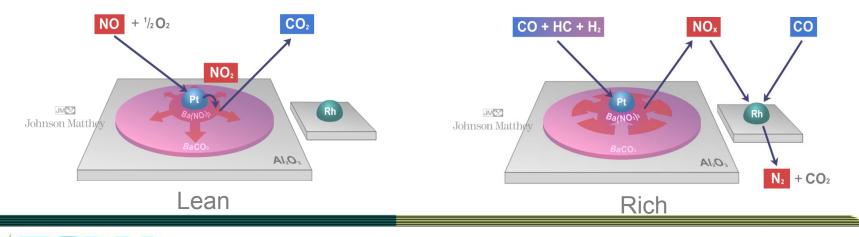
SCRF®

NSC _{Urea}

Key Requirements

- Low temp (city) NOx storage -
 - Increase low temp capacity
 - Increase release temperature
 - Minimise high temp storage
 - Convert stored NOx at low (city) temperatures
- Stable (& low temperature) HC / CO light-off

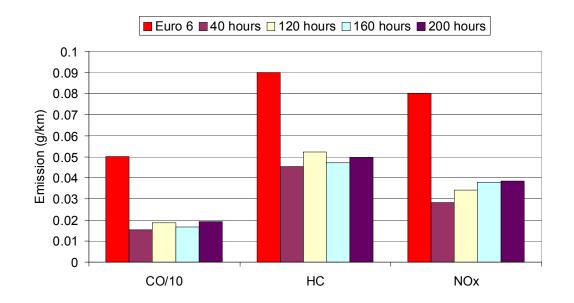


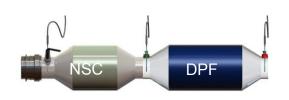

JM

NSC + SCRF® Store NOx until SCRF® operational

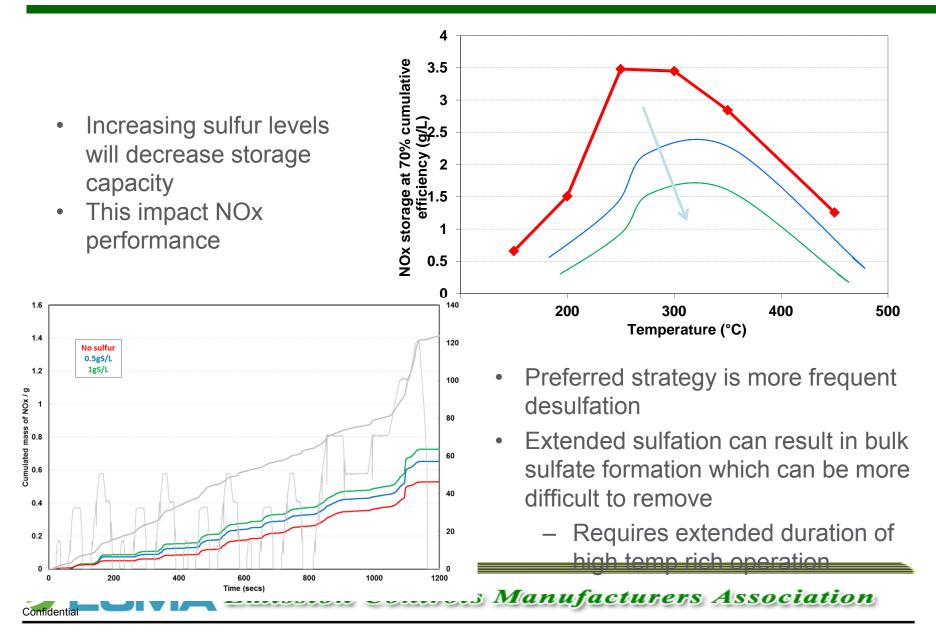
Basic System Method

- Store low temperature NOx to above SCRF[®] light-off
- Release NOx with temperature or rich purge
- Optimise NSC storage & SCRF[®] conversion windows
 - Low light-off SCRF[®] for best system performance





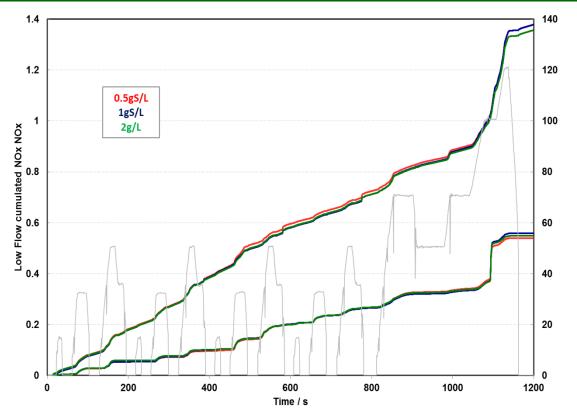
Highly Durable Advanced NOx Traps Show Good Stability after Extended Engine Ageing



- 75% ESV NSC + CSF on 4 cylinder Euro 6 engine
- Harsh engine ageing with temperatures >800°C
 - 300 CSF regenerations
 - 70 De-sulfation regenerations

Confidential Emission Controls Manufacturers Association

Sulfation effects – NOx performance



Performance after deSOx

Impact of sulfur loading

- Good recovery of the performance after deSOx
- Extended sulfation can result in bulk sulfate formation which can be more difficult to remove
 - Requires extended duration of high temp rich operation

Advanced Cu SCR

Advanced Cu SCR has

- •Good conversion, especially at low temperature
- •Low N₂O

100

80

60

40

20

100

150

200

NOX Conversion (%)

•Good HC tolerance

NO Only

250

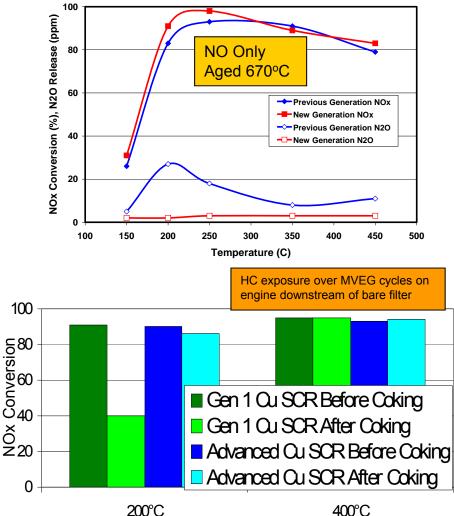
300

Temperature (C)

350

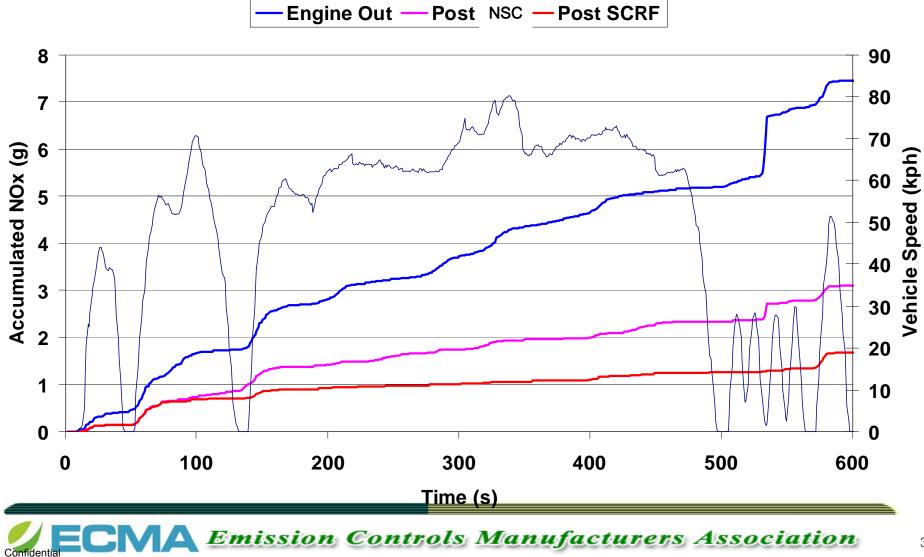
Aged 900°C

•Good high temperature thermal durability


Previous Generation

New Generation

400


450

500

Temperature (°C

NOx conversion after high temperature 800°C ageing

Summary

- EU5 experience
 - Gasoline
 - Pd-Rh TWC is the most popular technology.
 - Other technologies are in place to use best combination of PGM type and loading.
 - Light Duty Diesel
 - DOC+CSF is the typical system for EU5. Pt-Pd is well-used PGM in DOC.
 - Low Sulfur content in fuel is important to maximize catalytic function.
- EU6 experience
 - Gasoline
 - GPF is effective after-treatment technology for reduction of PN and other pollutants from DI engine.
 - Light Duty Diesel
 - Advanced NSC plus SCRF® is able to meet most sever scenario of upcoming EU6c regulation.