150 years

Retrofit in China

Bob Chen Head of Commercial China, Mobile Emissions Catalysts Asia Pacific

Retrofit in China

150 years

Bob Chen Head of Commercial China, Mobile Emissions Catalysts Asia Pacific

HDD Retrofit Asia Pacific

- Hong Kong franchised Bus & HDD Truck
- Beijing Bus
- Shanghai Tunnel Service Vehicles
- Guangzhou Bus
- Macau Bus & Truck
- Shenzhen Bus
- Bangkok Thailand Bus and Truck
- Hong Kong Stationary Engine
- Hong Kong Ferry

History of Hong Kong Retrofit

- More than 35,000 units DOC were retrofitted in Hong Kong truck to improve emission from Pre-Euro to Euro II in 2000
- More than 2,300 units DPF were retrofitted on Hong Kong Franchised Bus to meet Euro IV/V target in 2009
- 3 units SCR+AMOX systems are retrofitted on Hong Kong Franchised Bus to reduce NOx emission and an on-road trial in 2013 as pilot run.
- 3,900 buses is under retrofit in 2015 by DCH, using DOC+CSF+SCR System.

Government Support is a Must

- HK Government is subsidizing HK franchised bus operators for retrofitting Euro II and Euro III engine.
- DCH worked with HK franchised bus operators and HK Vocational Training School to do the test of verifying the technology from BASF

Lessons Learned

- Retrofit project is more challenged
 - Old engine and different model/characteristic
 - No access to the original engine control unit, additional separated control unit may be requested for after-treatment control (e.g. DPF regeneration, Urea injection system...)
- System approach for retrofit project
 - OEMs-System integrator-Catalyst supplier work closely
 - Make different catalog for the target vehicles and design the system for vehicle group (not only target at a single vehicle) based on the typical engine out
 - Sufficient data collection is important for different system design
 - Engineering work by integrator to ensure the system work well (space constrain, control system...)
- Trial run test on road is necessary to validate the system
 - Based on different vehicle catalog and after treatment system
 - Collect more data to optimize the system

Role and Responsibility

- End customer Kowloon Bus
 - Application specification
 - Raw emissions and conversion target define
- System integrator DCH
 - Auxiliary equipment selection (e.g. urea, fuel injectors, pump, sensor)
 - Package design, engineering, and fabrication
 - Final calibration (such as urea, and fuel injection strategy) and turn-key
- Catalyst supplier BASF
 - Work closely with system integrator and end customer
 - Select appropriate catalyst technology and calculate catalyst volume
 - Recommend and define operating window

Select Best Fit Technology and System

- System configuration & dimensions
- Engine control system: Mechanical pump or electronic control?
- Space velocity
- if needed: regeneration strategy
 - passive NO₂
 - active NO₂
 - active O₂
- Engine characteristics
 - Raw emissions, especially NO_x → required NO_x conversion and PM reduction requirement
 - Temperatures: in cycle, engine map, T_{max}
- Quality of fuel (desulfation strategy)

Preparation Works for CSF/SCR

Preparation Works for CSF/SCR

Muffler System

China Local Developed System

- Low Cost whole system
- Burning system can be shared among buses
- No calibration needed
- Based on BASF CSF

Photo Provided by Ningbo Shikai

