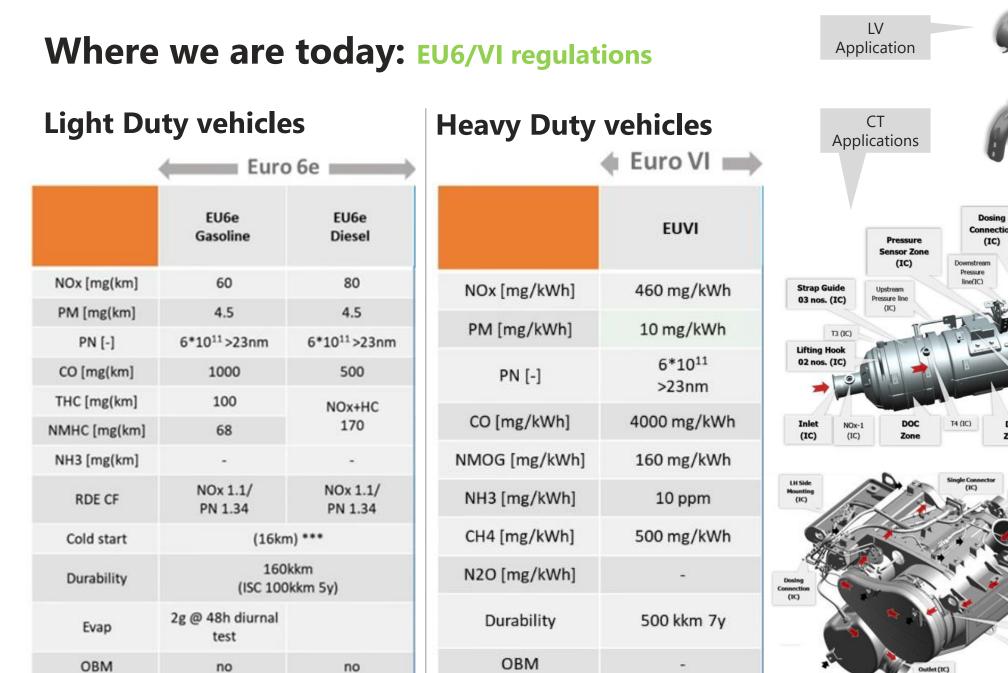
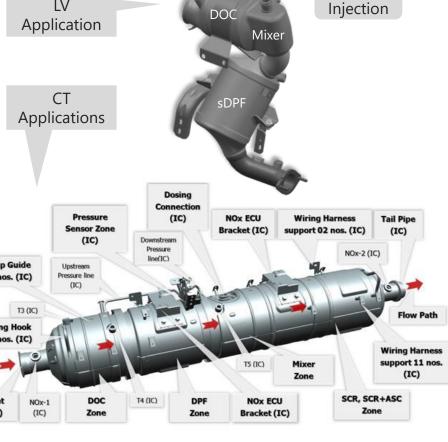
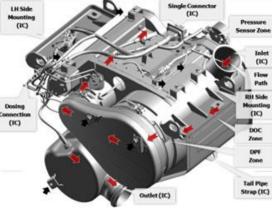


DRIVING ADVANCEMENTS IN GLOBAL MOBILITY


Tenneco Advance Modelling and Simulation Studies for Cold Start Challenges in EU-VII/CN-VII Architectures


ECT 2023 02/11/2023


- Yogesh Choudhary

Agenda

Urea

TENNECO CONFIDENTIAL

Where we heading: Potential EU-VII/CN-VII regulations

Euro7 & AQD - Update on EU Regulations

EURO7-Regulation: Co-Decision Process/ Summary of latest Stakeholder Positions EURO7/VII EMISSION LIMITS PASSENGER CARS AND VANS

	Euro	· · · · · · · · · · · · · · · · · · ·	Euro 7				
	EU6e	EU6e Diesel	EU7 COM(2022) 586	EU Council 22.09.2023		ENVI 12.10.2023	
	Gasoline			Gasoline	Diesel	M1,N1 Class1	
NOx [mg(km]	60	80	60	60	80	60	
PM [mg(km]	4.5	4.5	4.5	4.5		4.5	
PN [-]	6*10 ¹¹ >23nm	6*10 ¹¹ >23nm	6*10 ¹¹ >10nm	6*1011	>23nm	6*10 ¹¹ >10nm	
CO [mg(km]	1000	500	500	1000	500	500	
THC [mg(km]	100	NOx+HC	100	100	NOx+HC 170	100	
NMHC [mg(km]	68	170	68	68		68	
NH3 [mg(km]		-	20			20	
RDE CF	NOx 1.1/ PN 1.34	NOx 1.1/ PN 1.34	1.0	?		-	
Cold start	(16km) ***		10km **	(16km) ***		10 km **	
Durability	160kkm (ISC 100kkm 5y)		160kkm 8y 200kkm 10y *	160kkm 8y 200kkm 10y *		200kkm 10y 240kkm 12y *	
Evap	2g @ 48h diurnal test		0.5g @ 48h diurnal test	2.0 g/test		0.5g @ 48h diurnal test	
OBM	no	no	yes	ye	25	yes	

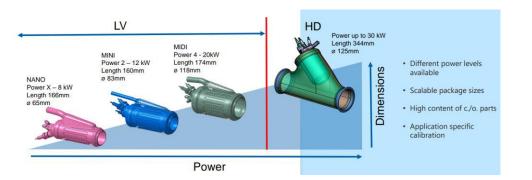
Durability multiplier of 1.2 applicable between 160kkm and 200kkm
EU7 Cold start budget [mg] = Distance x emission limit;
EU6 minimum trip distance of urban phase RDE
Slightly higher values for N1 class2 and 3

ISC: In-Service Conformity

Where we heading: Potential EU-VII/CN-VII regulations Euro7 & AQD - Update on EU Regulations

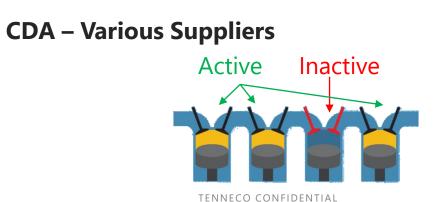
EURO7-Regulation: Co-Decision Process/ Summary of latest Stakeholder Positions EURO7/VII EMISSION LIMITS HEAVY DUTY VEHICLES (LORRIES AND BUSES)

🚸 Euro VI 🗰 🔶							
	EUVI	EUVII Cold	EUVII Hot	EU Council 22.09.2023		ENVI 12.10.2023	
				WHSC/WHTC	RDE	WHSC/WHTC	RDE
NOx [mg/kWh]	460 mg/kWh	350 mg/kWh	90 mg/kWh	230	300	200	260
PM [mg/kWh]	10 mg/kWh	12 mg/kWh	8 mg/kWh	8		8	10
PN [-]	6*10 ¹¹ >23nm	5*10 ¹¹ >10nm	2*10 ¹¹ >10nm	6*10 ¹¹ >23nm	9*10 ¹¹ >23nm	6*10 ¹¹ >10nm	7.8*10 ¹¹ >23nm
CO [mg/kWh]	4000 mg/kWh	3500 mg/kWh	200 mg/kWh	1500	1950	1500	1950
NMOG [mg/kWh]	160 mg/kWh	200 mg/kWh	50 mg/kWh	80	105	75	98
NH3 [mg/kWh]	10 ppm	65 mg/kWh	65 mg/kWh	65	85	60	78
CH4 [mg/kWh]	500 mg/kWh	500 mg/kWh	250 mg/kWh	500	650	500	650
N2O [mg/kWh]	-	160 mg/kWh	100 mg/kWh	200	260	160	208
Durability	500 kkm 7y	Main lifetime 700 kkm 15y Add. Lifetime: 875 kkm		N2,N3,M3* 300 kkm 8y / 375 kkm 10y N3,M3 700kkm 12y, 875 kkm 15y		N2,N3,M3* 340 kkm 10y / 400 kkm 12y N3,M3 750kkm 15y, 900 kkm 17y	
OBM	-	ye	es	γe	25	γe	25


* N2, N3 < 16t, M3 <7,5t

* N2, N3 < 16t, M3 <7,5t

CSTU – A Tenneco Proprietary Product


New Technology Introduction

- Cold Start Thermal Unit (CSTU)
 2kW 35kW
- E-Heater
 1 kW 17kW
- □ Cylinder De-activation

E-Heater – Various Suppliers

Moderate heating

→ Heat up strategy has direct impact to tailpipe emission reduction

Rapid heating

Catalyst temperature

Engine Start

TENNECO THERMAL UNIT

· PGM free, controlled heat supply

Catalyst Light-Off Temp. Gasoline ~400°C Diesel ~ 200°C

Engine Out Emission

Time in cycle

w/o active heating

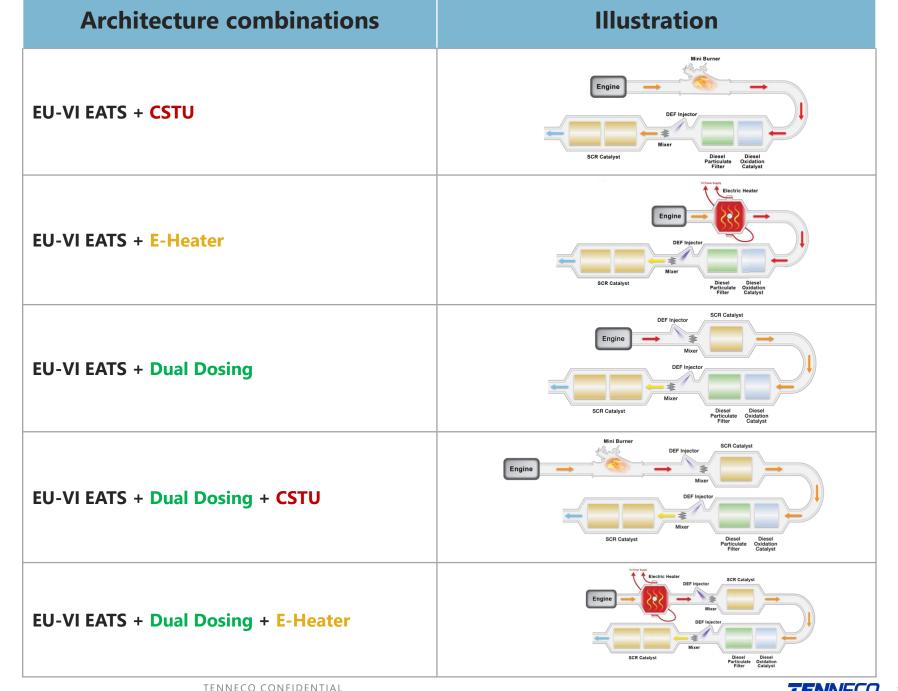
Provides rapid emission system light-o

mperature opera

es NOx emissions compliance

Strategies to meet EU-VII / CN-VII / **EPA 2027** emissions norms

Potential Engine Add-ons (Optional):

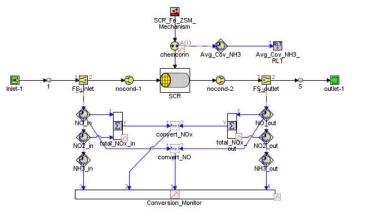

- EGR (Exhaust Gas Recirculation)
- CDA (Cylinder De-Activation) •

Add-on Heat Source to ATS:

- CSTU: Cold Start Thermal Unit or Pre-• Burner
- E-Heater •

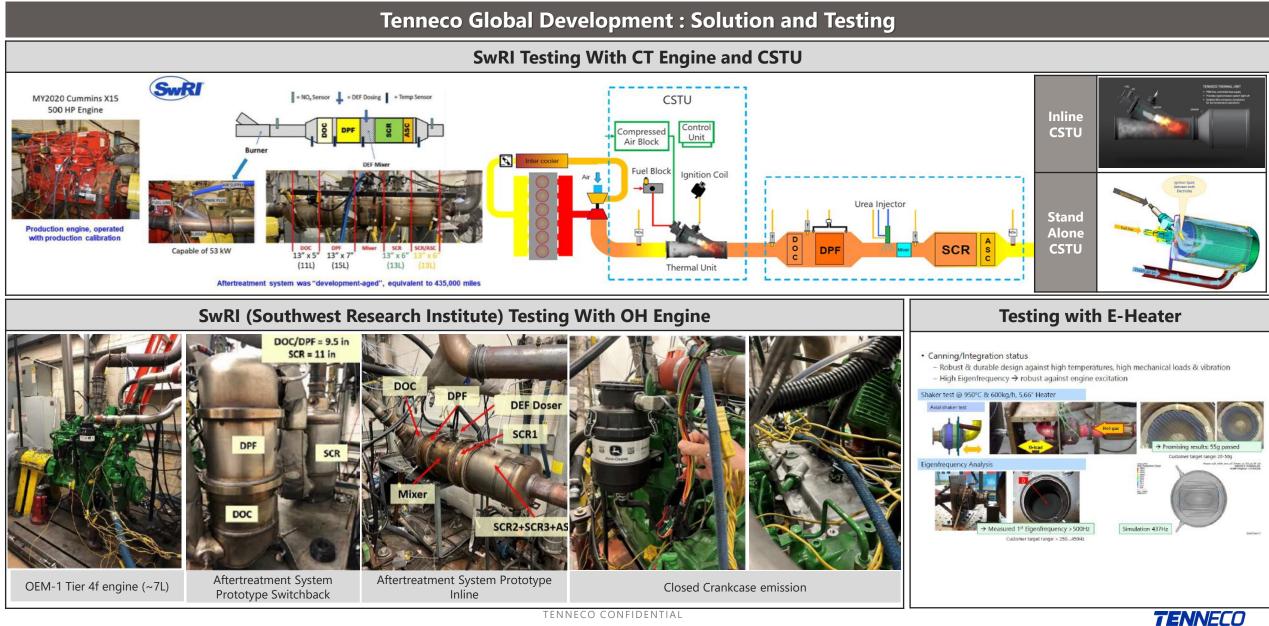
E-Heater options:

- 24V
- 48V


EU-VII / CN-VII Architectural Potential Challenges

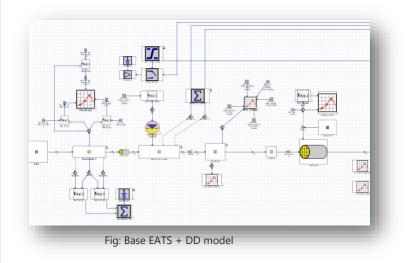
✓ <u>Tenneco is partnering with</u>
 <u>OEMs and catalyst suppliers to</u>
 jointly investigate these
 architectures and develop EATS
 controls through System
 modelling and 1D simulations
 using GT-Suite software

Architecture combinations	Can meet EU- VII limits?	Challenges	
EU-VI EATS + CSTU	Yes	 Less/no margin with regulatory limits Large catalyst volume System packaging CSTU / E-Heater response time w.r.t. 	
EU-VI EATS + E-Heater	Yes	 Cold start assist (controller required) Air supply to CSTU or 48V battery for E-Heater New calibration strategies Early catalyst aging 	
EU-VI EATS + Dual Dosing	Yes	 Less/no margin with regulatory limits Complex calibration strategies System packaging 	
EU-VI EATS + Dual Dosing + CSTU 🗸		 Complex calibration strategies System packaging CSTU / E-Heater response time w.r.t. 	
EU-VI EATS + Dual Dosing + E-Heater ✓	Yes	 Cold start assist Air supply to CSTU or 48V battery for E-Heater Early catalyst aging 	



Tenneco's Advance System Modeling and 1D Simulations for EU-VII/CN-VII EATS

TENNECO CONFIDENTIAL


PARTNERING WITH RESEARCH INSTITUTES, OEMS, CATALYST COATERS AND **OTHER TIER-I SUPPLIER FOR JOINT INVESTIGATION**

Tenneco EU-VII / CN-VII EATS Model library:

Generic Models ready for:

- 1. Baseline EU-VI/BS-VI ATS (Base-ATS)
- 2. Base-ATS + CSTU
- 3. Base-ATS + E-Heater
- 4. Base-ATS + DD
- 5. Base-ATS + DD + CSTU
- 6. Base-ATS + DD + E-Heater

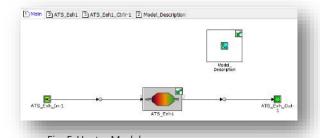


Fig: E-Heater Model (Different model for different E-Heater)

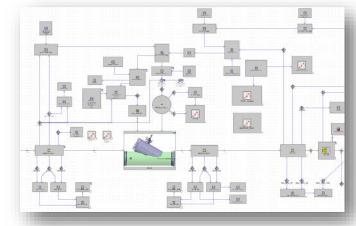
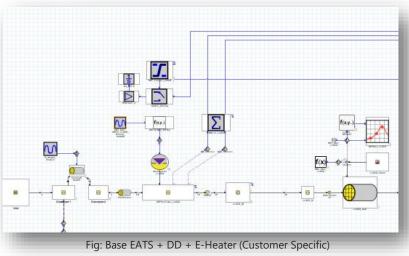
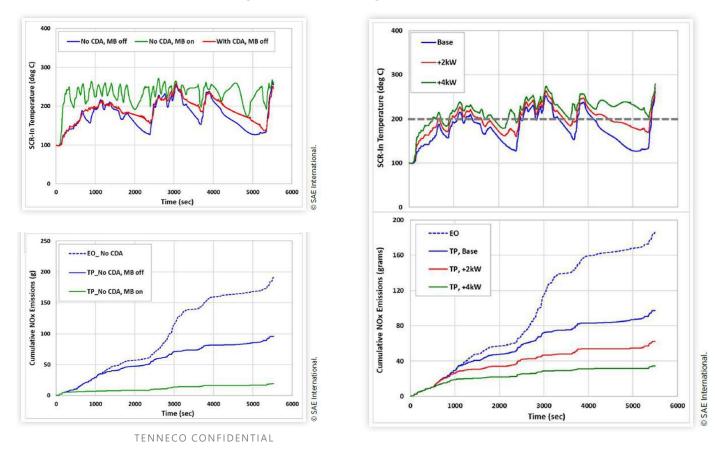



Fig: Base EATS + DD + CSTU Model



Potential Architectural Trade-Offs

Architectures	Trade-offs
Base EATS + Heating source (CSTU/E-Heater)	 Tailpipe NOx Vs Energy consumed by the heating source (fuel or electric) Tailpipe NOx Vs Heating source temperature w.r.t. DOC inlet temp limitation Vs SCR inlet temperature Heating source operations Continuous Vs Intermittent Vs initial 10/20 Kms only Etc.
Base EATS + DD	 ccSCR volume Vs mSCR volume Urea dosing to ccSCR Vs mSCR NOx conversion at ccSCR Vs DPF passive regeneration ccSCR operations (Continuous Vs Intermittent Vs initial 10/20 Kms only) Etc.
Base EATS + DD + Heating source (CSTU/E-Heater)	 Tailpipe NOx Vs Energy consumed by the heating source (fuel or electric) NOx conversion at ccSCR Vs DPF passive regeneration Urea dosing to ccSCR Vs ccSCR NH3 Storage Vs NH3 Slip from ccSCR Etc.
TENNECO CONFIDENTIAL	TENNEC

Summary

- Given the multitude of potential architectural solutions and their associated trade-offs, the testing permutations and combinations become substantial
- Hence, Tenneco is utilizing system modeling with precise input boundary conditions and conducting 1D simulations, enables us to assess all the potential EU-VII architectures along with their respective trade-offs, resulting in substantial time, cost, and effort savings.
- Below graphs are representation of assessing the CSTU and E-Heater testing, respective system modelling & 1D simulation correlation. Demonstrating LLC cycle define by CARB for Low-NOx emissions requirements; Source SAE Paper 2020-01-0359 "Simulation of Aftertreatment Thermal Management - Strategies for Low-Load Operation"

