ECT-2022 Session 5 Heavy Duty – Automotive 11th November 2022

New Cordierite Diesel Particulate Filter for Tight PM/PN Regulations

Y. Furuta, K. Tanaka, T. Aoki NGK Insulators, Ltd.

T. Ogata NGK Technologies India Pvt. Ltd.

Diesel Particulate Filter: DPF

CONFIDENTIAL

Background

Design Concept

Performance

- PM/PN Filtration Performance
- Pressure Drop / Pressure Drop Hysteresis

Background

Design Concept

Performance

- PM/PN Filtration Performance
- Pressure Drop / Pressure Drop Hysteresis

HDV/NRMM Regulation

ì										
		2021	2022	2023	2024	2025	2026	2027	2028~	
	* * * * * * * * * * * * * * * * * * * *	Euro VI step E					Euro VII (Timing is TBD)			
		ISC PEMS CF=1.63 (CF1.0=6.0 x 10 ¹¹ #/kWh)				1)	Stricter PN, NOx&CO ₂			
			US10			ARB2024		EPA/AR	RB2027	
<u>HDV</u>		No PN, PM 10 mg/bhp-hr PM 5 mg/bhp-hr / Tighter NOx&CO ₂ / Extended					d Warranty			
		BS \	/I stage I		BS VI	stage II		BS \	/II?	
		$\parallel \qquad \qquad$						er PN? MS CF?		
	* * * *	Stage V							Stage VI?	
		PN 1.0x10 ¹² #/kWh(NRTC/NRSC), NTE with CF=2.0 for <560kW							PEMS?	
		Tier4 Final							Tier5?	
<u>NRMM</u>		NI DNI DNA O OO /INA/I NITE 'NI OE 4 E (E/OLNA/						PM 5mg/kWh		
		TREM III TREM IV				TREM V				
		CEV IV				CEV V				
		No PN, PM 0.025 g/kWh PN 1E+12#/kWh(NRTC/NRSC)								

Requirements for DPF

Regulation Key Words	Requirement for DPF			
Tighter PN emission	Higher Filtration Performance			
	Lower Pressure Drop			
Decrease CO ₂	Smaller Pressure Drop Hysteresis (for effective regeneration)			
Ultra Low NOx	Lower Heat Mass (Improve Light Off)			
Extended Warranty	Higher Ash Capacity			

Background

Design Concept

Performance

- PM/PN Filtration Performance
- Pressure Drop / Pressure Drop Hysteresis

Concept of New DPF

Requirements for DPF

Idea

- High Filtration Performance
 - је .
- Low Pressure Drop
 Higher Porosity
- Small Hysteresis

Smaller Pore Size Challen Pore Size Challen Portion
 Higher Porosity
 +Uniform Pore Size Distribution

Low Heat Mass

Cordierite Material

High Ash Capacity

Thin wall + Asymmetric cell

Challenge: Improve filtration performance with decreasing pressure drop Developed DPF: Cordierite new material + thin wall + asymmetric cell

New Material Design / Set MPS target

Decreasing MPS improves filtration efficiency, but simultaneously increases pressure drop as a result of higher DPF-wall permeability. MPS target was optimized by balancing the initial pressure drop with required PN filtration efficiency.

New Material Design / Pressure Drop with Soot Behavior

Smaller MPS shows higher pressure drop with soot due to inferior dP pore performance.

New Material Design / How to improve dP Pore

Uniform Gas Flow

: Material

: Soot

Wall Surface Pore Uniformity vs dP Pore

- Faster Gas flow at large pore
- Deep soot penetration
- → Worse dP Pore

Uniform pore size

- Even Gas flow distribution
- Shallow soot penetration
- → Better dP Pore

surface pore diameter

Uniform

Uniform gas flow (=uniform pore) will be key to improve dP Pore performance.

New Material Design / Flow Analysis

Evaluate the flow velocity distribution on the surface of the substrate by flowing gas into the 3D model computationally.

New Material Design / Pore optimization by flow analysis

- 1: In case smaller MPS with current material, higher flow velocity at large pore area
- 2: In case small MPS with modified material, less large pore and uniform flow velocity
- 3: With high porosity, the flow path can be increased (blue color in flow velocity)

Background

Design Concept

Performance

- PM/PN Filtration Performance
- Pressure Drop / Pressure Drop Hysteresis

PN Filtration Performance / WHTC & WHSC

New DPF shows higher PN filtration performance than current DPF because of smaller MPS.

New DPF has a wider safety margin against EuroVI PN standard.

PN Filtration Performance / Simulated ISC-PN PEMS

New DPF shows higher filtration performance than current DPF because of smaller MPS.

It has strong potential to achieve EuroVI-e ISC-PN PEMS regulation.

Pressure Drop with Soot

New DPF shows lower pressure drop because of reduced dP pore.

The description and higher porosity contributes.

Pressure Drop Hysteresis

New DPF shows smaller PD hysteresis due to uniform pore and higher porosity.

Background

Design Concept

Performance

- PM/PN Filtration Performance
- Pressure Drop / Pressure Drop Hysteresis

Summary

NGK has developed new Cordierite DPF to meet tighter PN/PM regulations.

Higher PN filtration performance with lower pressure drop and smaller pressure drop hysteresis were obtained.

NGK is now developing further advanced DPF material for beyond 2025 regulation based on confirmed design concept.

