ECT-2023
Session 4
Off-Road Applications 01
2nd November 2023

Technology of Diesel Particulate Filter for Tighter Non-Road regulation in India

T. Aoki, K. Tanaka, T. Ogata, H. Ota NGK Insulators, Ltd.

N. Hibi, S. Muraoka, N. Gautam, T. Matsuda NGK Technologies India Pvt. Ltd.

Diesel Particulate Filter: DPF

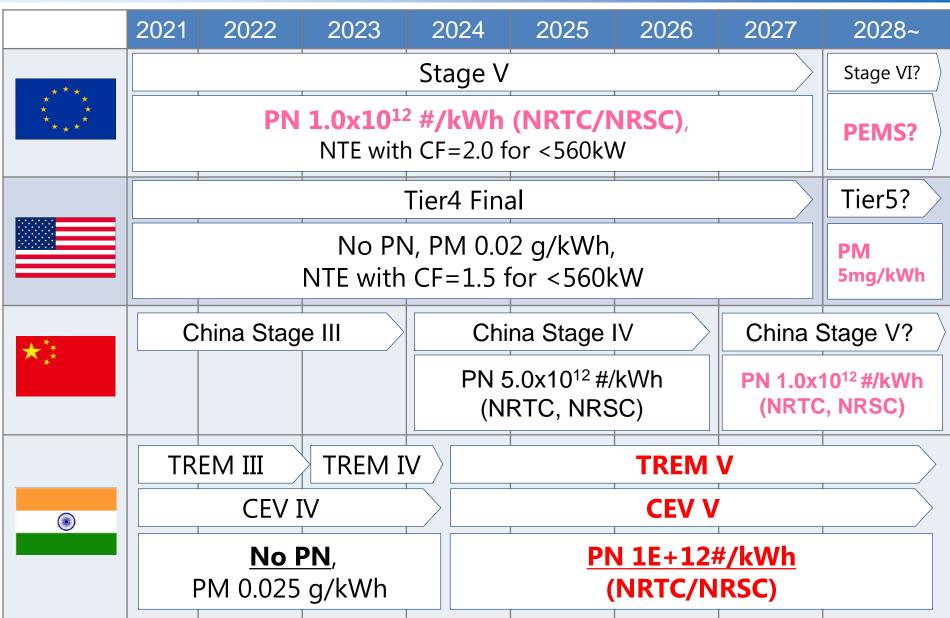
Background

Experimental Setup

Test Condition and Result

- 1. PN Filtration
- 2. Passive Regeneration
- 3. Active Regeneration
- 4. Drop To Idle

Background


Experimental Setup

Test Condition and Result

- 1. PN Filtration
- 2. Passive Regeneration
- 3. Active Regeneration
- 4. Drop To Idle

Non-Road Regulation

Requirements for Non-Road in Indian Market

Requirements for DPF

Solutions

High Filtration Performance

Smaller Pore Size

Low Heat Mass

Cordierite Material

Low Pressure Drop (with soot and ash)

Thin wall
Asymmetric cell

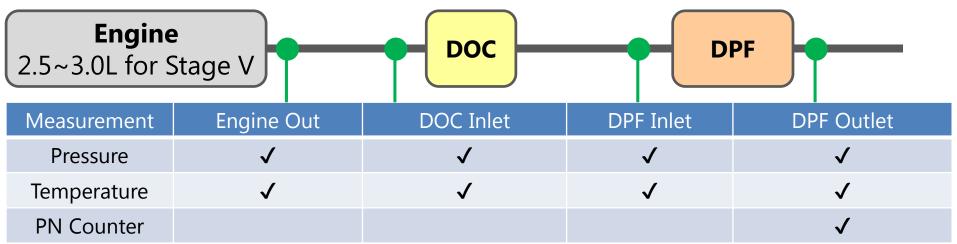
Required DPF for Non-Road in Indian market:

Cordierite material + thin wall + Asymmetric cell

DPF with different materials, with and without precious metal coating are compared with presented as viable options.

Background

Experimental Setup


Test Condition and Result

- 1. PN Filtration
- 2. Passive Regeneration
- 3. Active Regeneration
- 4. Drop To Idle

Test Condition

1. Testing Equipment

2. Sample List

	DOC	DPF		
Sample ID:	-	A (Cd-Coated)	B (Cd-Bare)	C (SiC-Coated)
Material:	Cordierite	Cordierite	Cordierite	Silicon carbide
Catalyst	with catalyst	with catalyst	with <u>out</u> catalyst	with catalyst
Porosity / MPS:	-	Base	← Same	Low / Same
Cell Structure:	400cpsi	8mil / 300cpsi Asymmetric	← Same	10mil / 300cpsi Asymmetric
Size:	Ф6.77" x 3"L	Ф6.77" x 5"L		

Test Items in Engine Bench

Test Item	Measurement Item	Purpose
1. PN Filtration	PN [#/kWh]	Demonstrate TREM V compliance
2. Passive Regeneration	Soot Amount [g/L] Pressure Drop [kPa]	Support for regeneration interval consideration
3. Active Regeneration	Regeneration Efficiency [%]	Compare fuel consumption during the regeneration
4. Drop To Idle	Max Temperature as per soot amount [deg.C]	Compare soot mass limit

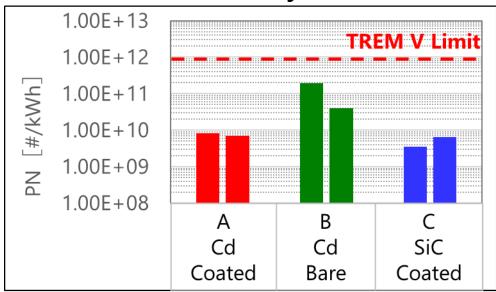
Background

Experimental Setup

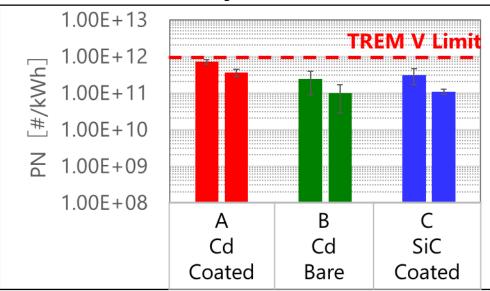
Test Condition and Result

- 1. PN Filtration
- 2. Passive Regeneration
- 3. Active Regeneration
- 4. Drop To Idle

*Error bar in RMC: plotted 1st an 2nd measurement



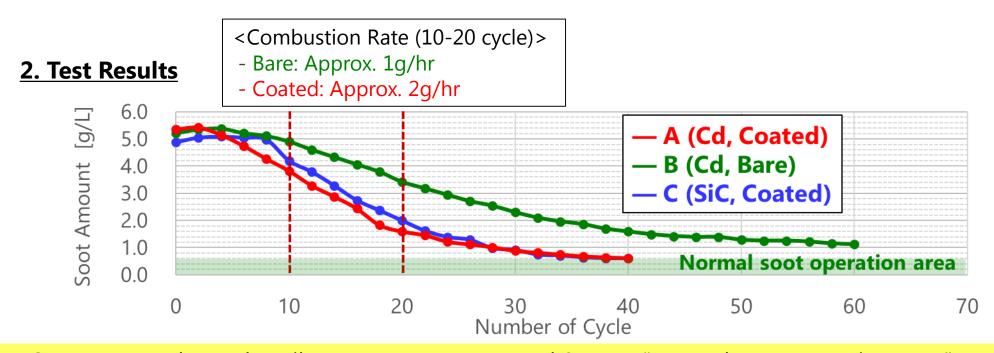
1. Test Conditions


Preconditioning: (Hot NRTC: 30 min) x 4times → Soaking:6hrs			
NRTC Test	(Cold NRTC: 30min) x 1time \rightarrow Soaking: 20min \rightarrow (Hot NRTC: 30min) x 3times \rightarrow PN measurement		
RMC test	(Rated Speed and Torque by 50%): 30min \rightarrow (Soaking: 20min and RMC) \rightarrow PN measurement (1 st) \rightarrow (Soaking: 20min and RMC) \rightarrow PN measurement (2 nd)		

2. Test Results

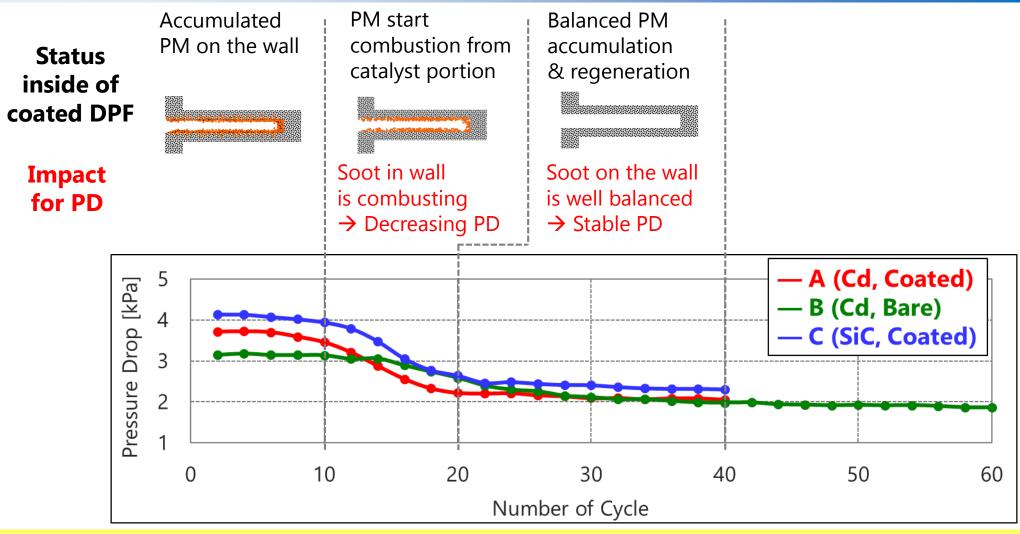
NRTC Cycle (N=2)

RMC cycle (N=2)


PN emission with NRTC and RMC meet TREM V regulation limit.
Coated Cd-DPF and coated SiC-DPF showed better PN filtration in NRTC.

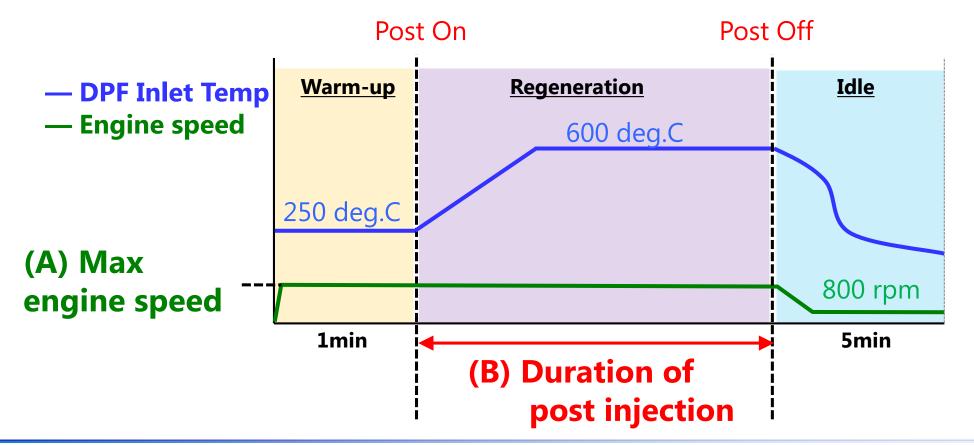
2-1. Result of Passive Regeneration (Soot Amount)

1. Test Conditions


Initial Soot loading:	5g/L
Measurement of Soot Amount:	2 NRTC running and weighing after stabilization
Total number of cycles:	40 NRTC

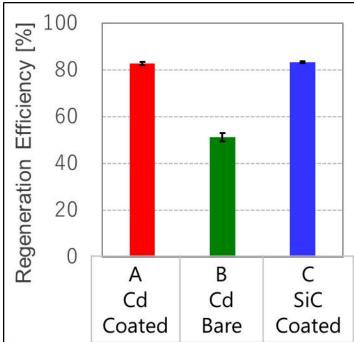
- Soot was combusted until soot amount to around 0.5g/L ("Normal soot operation area").
- These coated DPF samples showed similar combustion speed.
 Moreover, Cd material can reduce soot amount faster than SiC-DPF due to low heat mass.
- Bare DPF sample went to around 1.0g/L with less combustion speed.

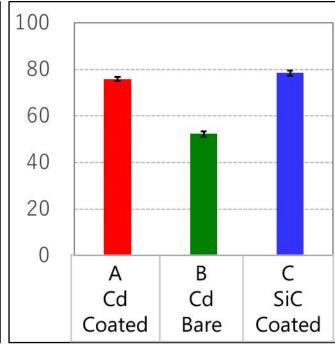
2-2. Result of Passive Regeneration (PD: Pressure Drop)

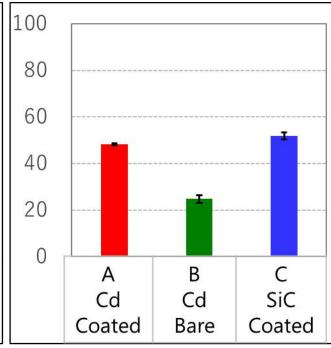


- Cordierite(Cd) DPF is lower pressure drop level than Silicon carbide(SiC) DPF.
- Pressure drop behavior of coated DPF is almost same with soot behavior.
- Initially, Bare DPF showed less Pressure Drop due to none of coating PD increasing impact.

3-1. Conditions of Active Regeneration


Conditions	(A)Max engine speed	(B)Duration of post injection	
1. Regular	2000 rpm	10 min	
2. Low Flow	<u>1400 rpm</u>	10 min	
3. Shorten post injection	2000 rpm	<u>5 min</u>	


3-2. Result of Active Regeneration (RE: Regeneration efficiency)


1. Regular Duration (10min / 2000rpm)

2.Low Flow (10min / 1400rpm)

3. Shorten post injection (5min / 2000rpm)

<Coated DPF>

- 1. RE of coated DPF achieved around 80%.
- 2. RE drops slightly with reduced gas flow rate. Still coated DPF achieved around 80%.
- 3. RE showed more sensitive to duration compared to gas flow rate and around 50%.

< Bare DPF>

RE showed approx. half or less compared with coated DPF.

4. Result of Drop To Idle (DTI)

1. Test Conditions

Engine Speed:	2000rpm to 800rpm (IDLE)	
Target Temperature :	600deg.C before DTI at inlet DPF	
DTI Timing :	Worst	

2. Test Results

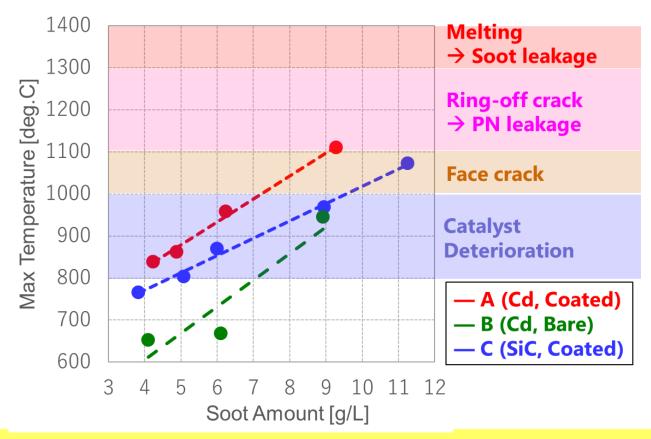


Image of failure mode

Note) Failure temperatures of SiC-DPF and Cd-DPF are similar level.

Safe SML of Cd-DPF is less than SiC-DPF around 1100deg.C of DPF Max temperature. Bare DPF didn't reach 1100deg.C, safe SML could be similar with Coated SiC-DPF.

Background

Experimental Setup

Test Condition and Result

- 1. PN Filtration
- 2. Passive Regeneration
- 3. Active Regeneration
- 4. Drop To Idle

Conclusion

Test Items		A Cordierite-DPF Coated	B Cordierite-DPF Bare	C Silicon carbide-DPF Coated
PN	NRTC	Base		Same
	RMC	Base	+	+
Passive Regeneration (Soot Combustion)		Base		Same (Slight lower)
Passive Regeneration (Pressure Drop)		Base	+	
Active Regeneration (Regeneration efficiency)		Base		Same
Soot Mass Limit		Base	+	+
Total expectation		Balanced	PN/PD oriented	PN/SML oriented

Coated Cordierite-DPF has balanced performance as TREM V. Bare Cordierite-DPF or Coated SiC-DPF could be an alternative candidate depending on required performance.

