Future Emission Norms Implications for FIE, Controls and Software

B Viswanath Chief Technology Officer

Date: 03rd November 2023

Contents

- ♦ About Delphi-TVS
- ◆ EU Proposals
- Updates to Euro 7 norms
- ♦ On Board Monitoring (OBM)
- Emission Norms Challenges
- Summary

About Delphi-TVS

- Joint venture between Phinia (Erstwhile BorgWarner / Delphi), USA and TVS Group to make fuel injection systems for diesel engines.
- ◆ 1st Plant set up in 1990.
- Technical Centres, with Engineers capable of supporting software, application and calibration developments to meet beyond BS6 and Tractors TREM V norms.
- High level of localization through a network of supplier partners developed in India
- Over 8 million (3 million CR and 5 million Rotary) Delphi-TVS systems in the field to-date. Products cover entire market range.
- Extensive aftermarket network with over 300 service centres dedicated to diesel in India and Delphi network worldwide.

Delphi-TVS Manufacturing & Technical Center

Delphi-TVS produces Diesel FI systems across 2 manufacturing facilities (near Chennai)

CR Manufacturing Oragadam

 Common Rail FI Systems manufacturing site (Pumps, Injectors, Rails and Filters)

Technical Center - Mannur

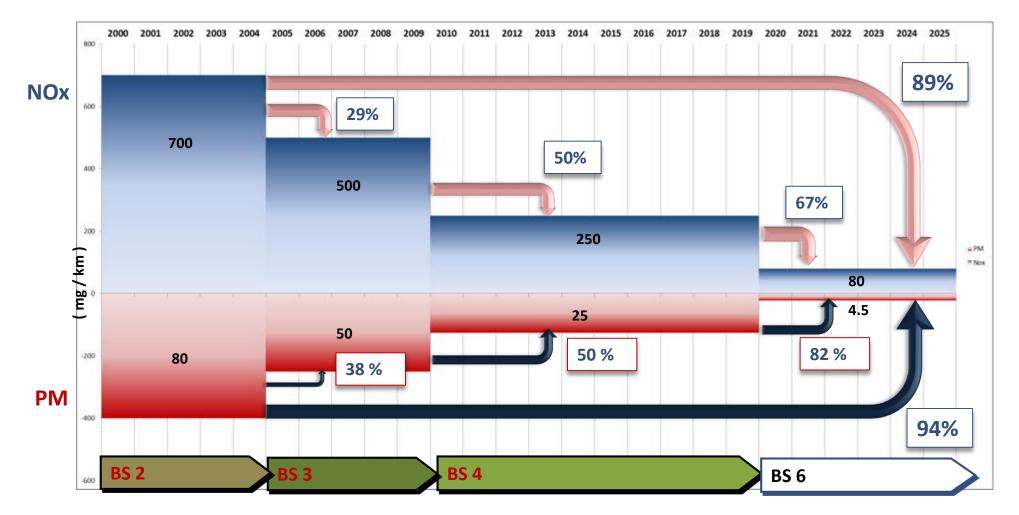
 Application and Calibration Development / Product Development / Validation

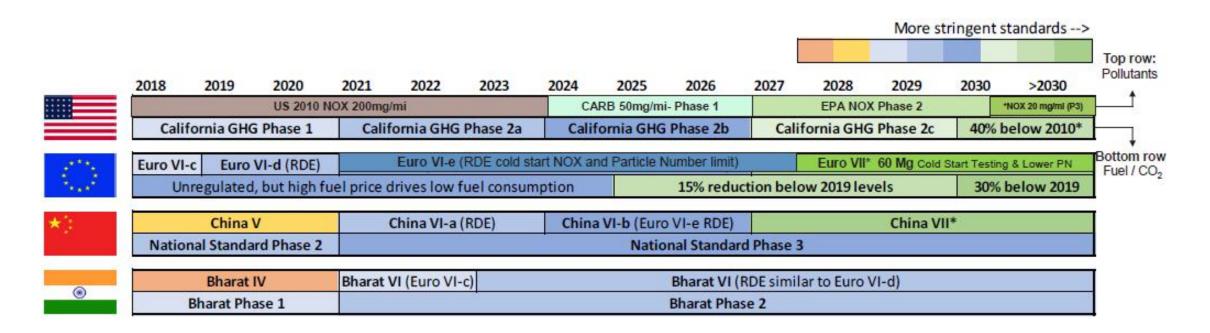
Mechanical FI Manufacturing

- Mannur
- Mechanical FI systems manufacturing site (Pumps, Injectors and Filters)

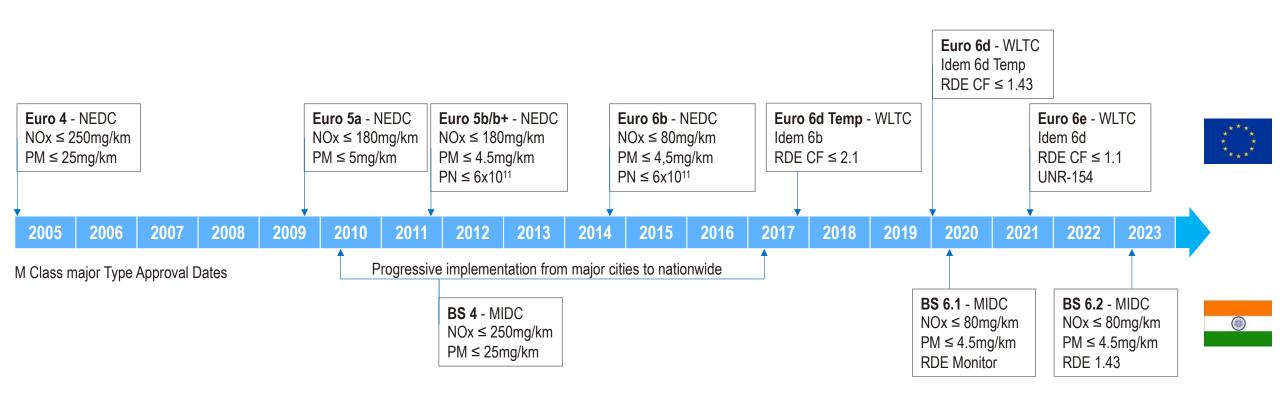
DTVS - Technical Centre Snapshot

- Tech Centre was established in 2007.
- Over 200 Engineers involved in development work.
- Group of Electronics engineers to work with customers for initial contact.
- End to end facility for turnkey development available at the Tech Centre.
- All application developments for India market done from here, thereby providing speedy response.




Progression of Indian emission norms

According to some recent studies in Europe, a modern diesel engine consumes up to 25% less fuel and emits up to 15% less CO₂ than a comparable gasoline engine.



Commercial Vehicles Emission & Fuel Economy Standards

- Implementation date for Euro 7 is unclear

EU Proposals – from May 2023

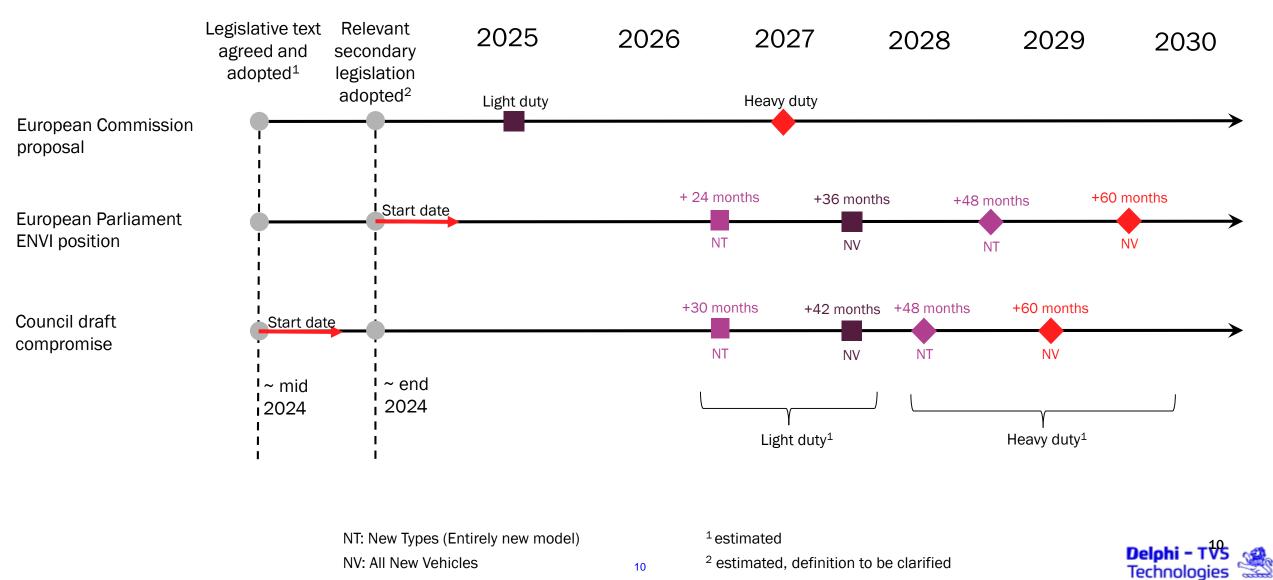
• EU Council Compromise Proposal

- Additional one year for all types
- Fixed duration once it comes into force

EU Parliament Compromise Proposal

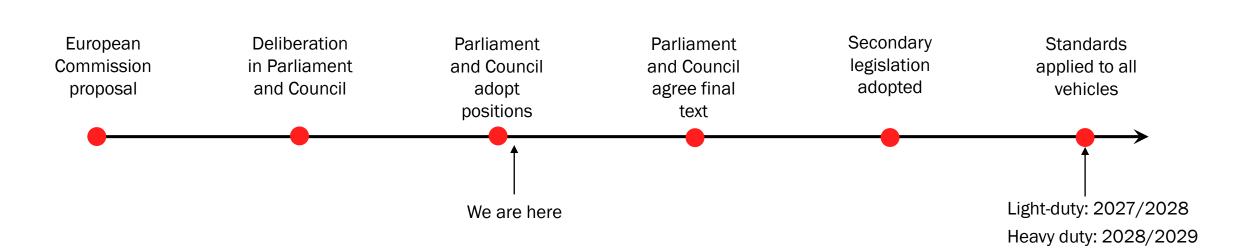
- Additional two years for all types
- Fixed duration
- Additional text to cover use of CO₂ neutral fuels

◆ Eu 7 LDV Implementation


 New Types 	-	Q2, 2027 to Q1, 2028
 All Types 	-	Q2, 2028 to Q1, 2029

◆ Eu 7 HDV Implementation

 New Types 	-	Q2, 2028 to Q1, 2029
 All Types 	-	Q2, 2029 to Q1, 2030


Institutional positions on implementation dates

10

Technologies

Euro 7 process (simplified) & expected implementation dates

Euro 7 emission norms – explanation

No technological distinction

- Euro 7 standard will no longer make a technological distinction between "conventional" gasoline engines, gasoline direct injection (GDI) engines, and diesel engines.
- Lowest emissions among the engines has been chosen for the future.
- Tighter rules for fine particulate matter
 - Euro 6 norm set limits for particles larger than 23 nanometers (Particulate Number, or PN23)
 - With the Euro 7 norm, limits are set for particles larger than 10 nanometers (PN10).
 - Smaller pollutants need to be considered, but also that more different types of pollutants
- Extension of emission standards
 - The period in which emission requirements must be met has doubled.
 - Euro 6 regulations 100,000 kilometers or 5 years,
 - Euro 7 (light-duty) 200,000 km or 10 years.

Euro 7 emission norms – explanation

- Limit for Short and Long Trips
 - Engines are most polluting during the first few minutes.
 - Cold, combustion is inefficient, and the exhaust aftertreatment systems do not work as effectively.
 - Euro 7 standard includes a test specifically for short trips of less than 10 kilometers.

	NOx	PM	PN10	СО	THC	NMHC	NH3
RDE (mg/km)	60	4,5	4×10 ¹¹	500	100	68	20
Trips <10km (mg/trip)	600	45	6×10 ¹²	5000	1000	680	200

Self-registration – used for ISC and Surveillance

- Euro 7 vehicles must monitor themselves,
- Existing OBD will change to OBM
- Many additional sensors and a computer where the data can be stored and read.
- Maximum emission limits on brakes and tyres
 - Limit on the emissions from brakes and tyres, which will restrict the amount of brake dust and tyre
 particulates from all types of cars.

Proposed standards & potential outcome – heavy duty

Proposed limits

Euro 7 Exhaust emission limits for M_2, M_3, N_2 and N_3 vehicles

Pollutant	Cold emission ²	Hot emissions ³	Emission budget for all trips less than 3*WHTC long	Optional idle emission limits ⁴
Emissions	per kWh	per kWh	per kWh	per hour
NO _x in mg	350	90	150	5000
PM in mg	12	8	10	
PN ₁₀ in #	5×10 ¹¹	2×10 ¹¹	3×10 ¹¹	
CO in mg	3500	200	2700	
NMOG in mg	200	50	75	
NH ₃ in mg	65	65	70	
CH₄ in mg	500	350	500	
N ₂ O in mg	160	100	140	

² Cold emissions refers to 100th percentile of moving windows (MW) of 1 WHTC for vehicles, or WHTC _{cold} for engines

³ Hot emissions refers to the 90th percentile of moving windows of 1 WHTC for vehicles or WHTC hot for engines

⁴ Applicable only if a system is not present that automatically shuts down the engine after 300 seconds of continuous idling operation(once the vehicle is stopped and brakes applied)

Potential outcome

- ► Limits maintained (except potentially higher limits for PN, N₂O)
- ▶ Possibly simplified limit and testing structure (replacing 90th percentile with average)

► Greater freedom to type approve with engine-only testing (with on-road testing for in-service conformity) DELPHI-TVS CONFIDENTIAL

Proposed On-Road Test Conditions – heavy duty

Parameter	Normal driving conditions	Extended driving conditions*
Extended driving divider	-	2 (applies to measured emissions only during the time when one of the conditions set out in this column applies)
Ambient temperature	-7°C to 35°C	-10°C to -7°C or 35°C to 45°C
Maximum altitude	1600 m	From 1600 to 1800 m
Towing/aerodynamic modifications	Not allowed	Allowed according to manufacturer specifications and up to the regulated speed
Vehicle Payload	Higher or equal than 10%	Less than 10%
Auxiliaries	Possible as per normal use	-
Internal combustion Engine Loading at cold start	Any	-
Trip composition	As per usual use	-

Extended test conditions of temperature, altitude, speed and trips make it stricter and more difficult to test

Euro7 emission limits Passenger Cars and Vans

		0					
	EU6e	EU6e	EU7		ouncil 0.2023	ENVI* 12.10.2023	
	Gasoline	Diesel	COM(2022) 586	Gasoline M1,N1 Class1/2/3	Diesel M1,N1 Class1/2/3	M1,N1 Class1/2/3	
NOx [mg(km]	60	80	60	60	80	60/75/82	
PM [mg(km]	4.5	4.5	4.5	4	.5	4.5	
PN [-]	6*10 ¹¹ >23nm	6*10 ¹¹ >23nm	6*10 ¹¹ >10nm	6*1011	>23nm	6*10 ¹¹ >10nm	
CO [mg(km]	1000	500	500	1000/1810/2270	500/630/740	500/630/740	
THC [mg(km]	100	NOx+HC	100	100/130/150	NOx+HC	100/130/160	
NMHC [mg(km]	68	170	68	68/90/108	170/195/215	68/90/108	
NH3 [mg(km]	-	-	20		-	20	
RDE CF	NOx 1.1/ PN 1.34	NOx 1.1/ PN 1.34	1.0		?	-	
Cold start	(16kn	n) ***	10km **	(16kn	ר) ***	10 km **	*
Durability		lkkm Dkkm 5y)	160kkm 8y 200kkm 10y *		km 8y n 10y *	200kkm 10y 240kkm 12y *	1 1 *
Evap	2g @ 48h diurnal Refuelling 0.05g/L		0.5/test Refuelling 0.05g/L	-	g/test uelling	0.5/test Refuelling 0.05g/L	[[*
OBM	no	no	yes	ye	es	yes	C F
RDE test conditions	Maximum dynamic	parameters defines	Any test, with weak safeguard against bias	Euro 6 c	onditions	Any test, with stronger safeguard against bias	

*European Parliament's Committee on the Environment, Public Health and Food Safety (ENVI)⁶

* Durability multiplier of 1.2 applicable between 160kkm and 200kkm ** EU7 Cold start budget [mg] = Distance x emission limit; ***EU6 minimum trip distance of urban phase RDE

Delphi - TVS Technologies

and

Euro7/VII emission limits Heavy duty vehicles

	EU VI		U7 022) 586		ouncil).2023		VI* .2023
		Cold	Warm	WHSC/WHTC	RDE	WHSC/WHTC	RDE
NOx [mg/kWh]	460 mg/kWh	350 mg/kWh	90 mg/kWh	230	300	200	260
PM [mg/kWh]	10 mg/kWh	12 mg/kWh	8 mg/kWh	8	-	8	10
PN [-]	6*10 ¹¹ >23nm	5*10 ¹¹ >10nm	2*10 ¹¹ >10nm	6*10 ¹¹ >23nm	9*10 ¹¹ >23nm	6*10 ¹¹ >10nm	7.8*10 ¹¹ >10nm
CO [mg/kWh]	4000 mg/kWh	3500 mg/kWh	200 mg/kWh	1500	1950	1500	1950
NMOG [mg/kWh]	160 mg/kWh	200 mg/kWh	50 mg/kWh	80	105	75	98
NH3 [mg/kWh]	10 ppm	65 mg/kWh	65 mg/kWh	65	85	60	78
CH4 [mg/kWh]	500 mg/kWh	500 mg/kWh	250 mg/kWh	500	650	500	650
N20 [mg/kWh]	-	160 mg/kWh	100 mg/kWh	200	260	160	208
Durability	500 kkm 7y		700 kkm 15y ne: 875 kkm		m 8y / 375 kkm 10y 12y, 875 kkm 15y		n 10y / 400 kkm 12y 15y, 900 kkm 17y
OBM	-	У	es	y	es	ye	es
RDE test conditions	Optional ISC		explicit safeguard st bias	Euro 6 c	onditions		er safeguard against as
				* N2, N3 < 16	t, M3 <7,5t	* N2, N3 < 16	t, M3 <7,5t

*European Parliament's Committee on the Environment, Public Health and Food Safety (ENVI)

Delphi - TVS Technologies

Expected Outcome

	EU Council 22.09.2023			IVI .2023
	WHSC/WHTC	RDE	WHSC/WHTC	RDE
NOx [mg/kWh]	230	300	200	260
PM [mg/kWh]	8	-	8	10
PN [-]	<mark>6*10¹¹</mark> >23nm	<mark>9*10¹¹</mark> >23nm	6*10 ¹¹ >10nm	7.8*10 ¹¹ >10nm
CO [mg/kWh]	1500	1950	1500	1950
NMOG [mg/kWh]	80	105	75	98
NH3 [mg/kWh]	65	85	60	78
CH4 [mg/kWh]	500	650	500	650
N20 [mg/kWh]	200	260	160	208
Durability	N2,N3,M3 300 kkm 8y N3,M3 700kkm 12y, 8			10y / 400 kkm 12y 15y, 900 kkm 17y
OBM	yes		ye	es

Special focus on CO2 for HD CO2 regulation situation for HD (14th of Feb)

The standards will apply to all classes of heavy duty freight and passenger vehicles, whereby current CO_2 standards only apply to medium and long-haul trucks. The following are the proposed revisions of the CO_2 reduction targets (vs. the 2019 baseline), and estimates for implied fleet shares of zero-emission vehicles (ZEV):

For all heavy-duty trucks (>3.5 tonnes) and coaches (8 or more passenger seats):

2025 No change: 15%

- 2030 Reduction target changed from 30% to 43% (~35-40% ZEV fleet share required)
- 2035 New reduction target of 64% (~60% ZEV fleet share required)
- 2040 New reduction target of 90% (at least 90% ZEV fleet share required)

For urban buses:

2030 100% ZEVs

The definition of heavy-duty ZEV includes any vehicle with CO_2 emissions less than 5g/tonne-km or 5g/passenger-km (which would accommodate H₂ICE vehicles, including those with diesel pilot injection). This definition is likely to be resisted by some NGOs, who are fundamentally against ICEs. A potential compromise could be a tighter threshold, which would still define pure H₂ICE vehicles as ZEV.

- New Regulation introduction will generate huge change in HD powertrain approach in next decade :
 - 2025 : Possible with ICE => Further step possible, cylinder deactivation, thermal management, friction reduction, small electrification...
 - **–** 2030 :
 - For urban buses : Electrification 100%? H2 ICE? H2 Fuel Cells?
 - For HD trucks : 35/40% ZEV fleet share required ! E-fuel ? H2 ? Electrification ? NGVs ?
 - Further 2035 : Strong reduction of pure ICE...Growth for alternative Powertrain system HPH2? Enhance Fuel Cells? Electrification ?

CO2 regulations still in negotiation but likely to have strong impact on current HD PWT definition

Euro 7 challenges

- Euro 7 will require FIE upgrades, emission control update and significant amount of software development
- ◆ FIE upgrades
 - Accuracy
 - Long term stability
 - Modelling
 - After treatment control
- ♦ After treatment
 - Close coupled DOC and deNOx
 - Double SCR systems
 - Preheating of catalyst

Legislation – Euro7 EMISSION REGULATION - HD WP1- Wet System/Emissions WP4- System

Propose	d implemen	tation by July 2027					•
Euro VII	emissions lii	mts vs Euro VI					
		Euro VII	Euro VII	Euro VI	lf Euro VII		
		Cold emissions ²	Hot emissions ³	Combined ⁴	was weighted		•
NOx	mg/kWh	350	90	460	126	>	•
PM	mg/kWh	12	8	10	9		
PN ₁₀	Number	5.00E+11	2.00E+11	6.00E+11			•
C0	mg/kWh	3500	200	4000	662		
NMOG ⁵	mg/kWh	200	50	160 (THC)	71		
NH_3	mg/kWh	65	65	10ppm			
CH4	mg/kWh	500	350	500	371	1	
N ₂ 0	mg/kWh	160	100	N/A			

65	65	10ppm		tuels.						
500	350	500	371							
160	100	N/A								
ssions	Emission bud less than 3*			Optional idle limits	s ⁴					
		150		5000						
		10	• Sneci	fic emission	ns hudø	et give	on if IS	C test i	is shor	P
	3x	:1011		Bx WHTC le	Ŭ					
	2	700		s to give a t	•	focus	on the	e cold s	start	
:	2	75		on of the te onformity li		e ver	/ low			
		70		dition an idl				duced -	– this i	s
	5	500		or Euro VII ned to prev	vent idli	ing to	warm	the cal	h while	P
	1	140	Ŭ	is sleeping						

- Cold and hot cycle tests now have their own specific limits in Euro VII (Euro VI is a weighted average of the two cycles).
- All limits are generally lower than Euro VI.
- NOx and N₂O limits will be challenging to meet – aftertreatment calibration.
- Total Hydrocarbon (THC) limit changed to NMOG to encompass emissions that could result from use of bio, paraffinic or synthetic

Trucks and coaches (N2, N3, M3) N3>16t, M3>7.5t N2, N3 Euro VI Euro VI Euro VI
Euro VI Euro VII Euro VII Euro VII
Lifotimo Mileage 300,000 km 300,000 km 700,000 km 700,000 km
Lifetime Years 6 8 7 15
CF 1.5 1.0 1.5 1.0
Additional lifetime ⁶ - 375,000 km - 875,000 km

For HD vehicles, both mileage and duration are increased Conformity Factor (CF) is deleted from Euro VII, as PEMS systems are now considered sufficiently accurate.

- Strong reduction of pollutants !
- Introduction of cold phase limit & idle Nox limit
- Reduction of CF from 1.5 to 1.0 & both mileage & duration are increased.
- \Rightarrow Improved fuelling accuracy & stability required. Smallest pilot injection required (?) Highest inj pressure (?)
- \Rightarrow Multiple injections number will increase close to PC.
- \Rightarrow Close loop mandatory for performance stability vs lifetime.
- \Rightarrow Impact in control/strategies for Generic Platform to be considered.

LELIN IN CONTRACTOR

Pollutant emis

NO_x in mg

PM in mg

PN10 in #

CO in mg

NH₃ in mg

CH4 in mg

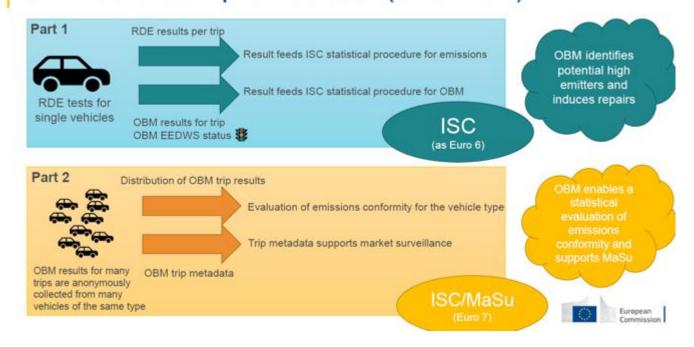
N₂O in mg

NMOG in mg

21

is shorter

Euro 7 – Legislation update – Status WP1- WetSystem/Emissions WP4- System


- For Diesel LCV programs Delphi-TVS / PHINIA system (wet system + strategies) can fulfill BS7 requirements with current data available.
- For MD/HD Diesel due to more severe emissions limits, increase mileage for in service conformity and reduced CF situation is more complex and three attributes need to be addressed :
 - Engine out emissions reduction. (The ATS is controlled by OEMs &/or FIE supplier (SCR + DPF) with already strategies available).
 - Injection pattern close to latest pass car specification (high number of injections, small separation, improved fueling accuracy).
 - HD/MD injector upgrade required (part to part, injection dispersion, etc..). Close loop control mandatory for EU7.
 - CO2 reduction. The contribution of Fuel System is not key but to be considered.
 - Reduction of leakages (injector/pump), reduction of weight, increase of pumping efficiency.
 - In service conformity
 - Mainly injector stability versus time and robust close loop control strategy.

EU7 OBM/OBD challenge & implementation PC/LCV/HD

Exceedance Emission Driver Warning System (EEDWS)

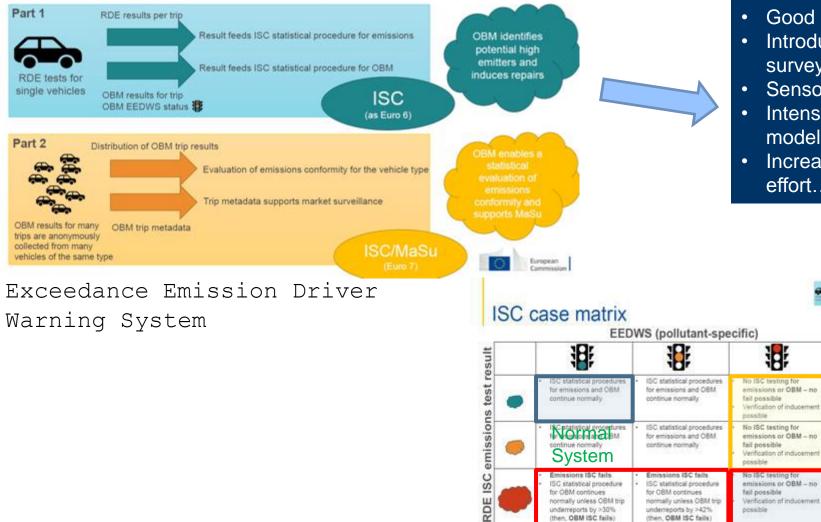
- OBM is the most significant challenge for Euro 7
- Traffic light system with display to the driver
- Warn driver when emissions are inconclusive or 2.5x limit
- Access via OBD port
- Cold start emissions are included
- Most emissions to be covered
- Validation of OBMs across all use cases and durability
- EU commission expect OBM to be accurate even above 200k kms
- Will be used as ISC and for Market Surveillance
- Multi component ageing

OBM as a compliance tool (overview)

DELPHI-TVS CONFIDENTIAL

Excess emissions driver warning system (EEDWS)

"Normal" Emissions


MiL On

"Error" Emissions >2.5x EURO 7 limit

"Inconclusive" Emissions MiL flash @

EU7 OBM/OBD challenge & implementation PC/LCV/HD

OBM as a compliance tool (overview)

- Good progress but not fully defined
- Introduction of OBM with real time pollutants survey could impact the EMS system (HW/SW)
- Sensors required •

1

Note: if EEDWS status changes after the RDE ISC test, the most favourable conditions apply

- Intensive introduction of virtual sensors, models, neural network.
- Increase of testing/Calibration/Validation effort...

Summary

- Fuel agnostic, tighter, longer durability will be the aim of new norms
- Fuel Injection System and Controls will have a major role to play in meeting these norms
- OBM could a significant addition
- ◆ Adoption of future norms (BS 7?) for India to be discussed and evolved
- Significant effort required for calibration, modelling and software development.
- ◆ Sufficient time required for any new implementation.

