## Johnson Matthey Inspiring science, enhancing life

Leading the Way in Bharat Stage-V Emissions Control Solutions with JM After-Treatment Systems

ECT 2023 "Leaping to Cleaner Air for Tomorrow" Dr Amit Singhania | 2<sup>nd</sup> Nov 2023

## Agenda

- 1 Off-Road Legislation in India
- 2 Challenges in Bharat Stage V
- 3 Regeneration Need & Strategies
- 4 NO Oxidation: Passive DOC
- 5 JM Capability
- 6 Summary





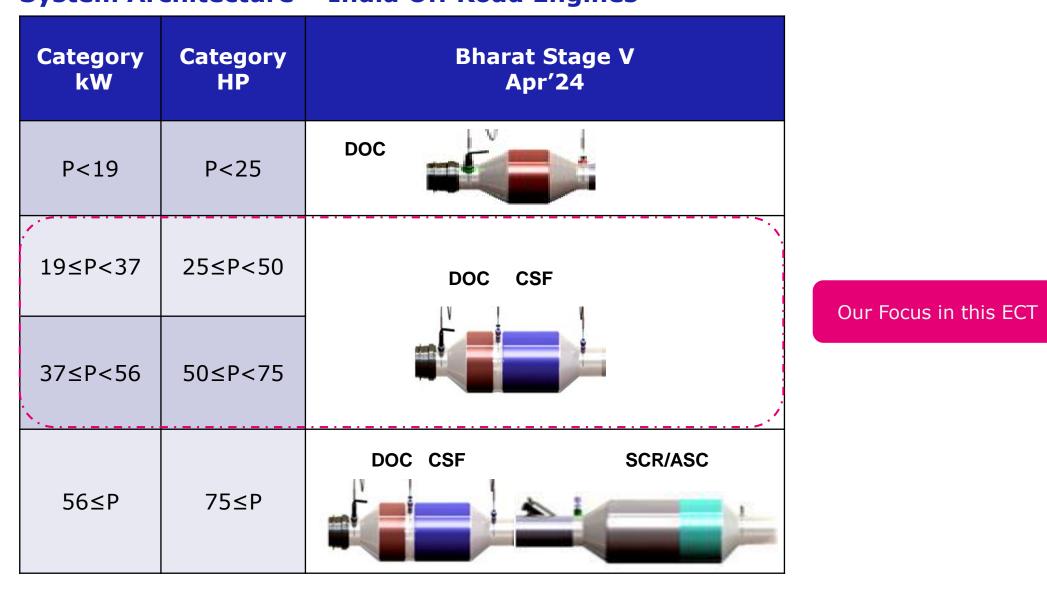
https://timesofindia.indiatimes.com/city/delhi/kids-lives-at-stake-100-mothers-march-to-pmsresidence/articleshow/71883129.cms



https://www.indiatoday.in/auto/latest-auto-news/story

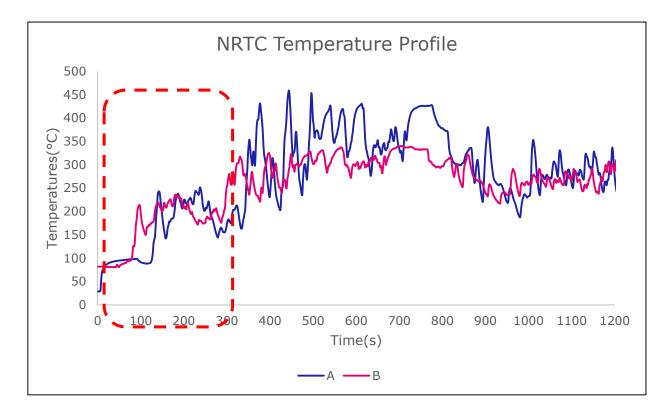


https://www.goodnewsnetwork.org/diesel-tractors-bulldozers-get-a-clean-up


### Bharat Stage (BS) Norms – Heavy-Duty Off-Road Application Bharat (CEV/TREM) Stage V - Effective from 1st April 2024

|                |                 | СО  | НС             | NOx | РМ    | PN                 | Test Cycle     |
|----------------|-----------------|-----|----------------|-----|-------|--------------------|----------------|
| Category, kW   | Category,<br>HP |     | g/kWh          |     |       | #/kWh              |                |
| P < 8          | < 10            | 8.0 | 7.5 (HC + NOx) |     | 0.4   | -                  | - NRSC         |
| $8 \le P < 19$ | 10 - 25         | 6.6 | 7.5 (HC + NOx) |     | 0.4   | -                  |                |
| 19 ≤ P < 37    | 25 – 50         | 5.0 | 4.7 (HC + NOx) |     | 0.015 | 1x10 <sup>12</sup> |                |
| 37 ≤ P < 56    | 50 - 75         | 5.0 | 4.7 (HC + NOx) |     | 0.015 | 1x10 <sup>12</sup> | NRSC &<br>NRTC |
| 56 ≤ P < 130   | 75 – 175        | 5.0 | 0.19           | 0.4 | 0.015 | 1x10 <sup>12</sup> |                |
| 130 ≤ P < 560  | 175 – 750       | 3.5 | 0.19           | 0.4 | 0.015 | 1x10 <sup>12</sup> |                |
| P > 560        | > 750           | 3.5 | 0.19           | 3.5 | 0.045 | -                  | NRSC           |

| DF - NRSC & NRTC |      | Durability                  |                                    |  |  |
|------------------|------|-----------------------------|------------------------------------|--|--|
| CO               | 1.3  | Category, kW                | Emission durability period (hours) |  |  |
| HC               | 1.3  | ≤37 (Constant speed engine) | 3000                               |  |  |
| NOx              | 1.15 | ≤37 (Variable Speed Engine) | 5000                               |  |  |
| PM               | 1.05 | >37                         | 8000                               |  |  |


Ministry of Road Transport and Highways, "Notification no. G.S.R. (201) (E) dated 05.03.2018 regarding Emission standards for CEV and Agricultural tractors," May 3, 2018

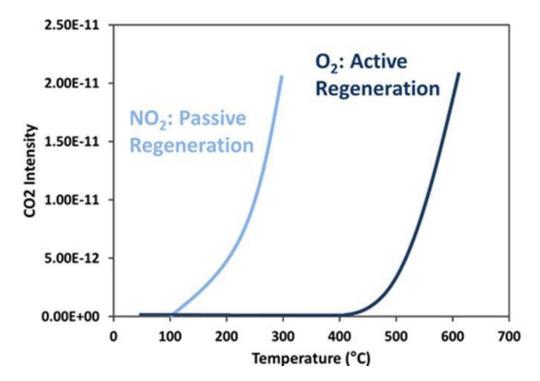
### Emission control solutions System Architecture – India Off Road Engines



## Challenges in <56kW

- Tightened limit of PN- Filter required
- Regeneration strategy complete passive/assisted passive/Active?
- Majority applications, Engine out temperature > 250°C for most of the time. Complete Passive regeneration system is possible?
- CCRT<sup>®</sup> Design optimize for volume, PGM loading and distribution to generate sufficient NO<sub>2</sub> & successful passive regeneration.
- Off road market is Cost driven: PGM optimization in terms of end user, Passive Regen systems can provide lower PGM use
- **Durability** of 8000 hours need to be evaluated for passive regen
- Need to understand engines/applications where passive is not possible due to low temperatures, assisted passive or active needed

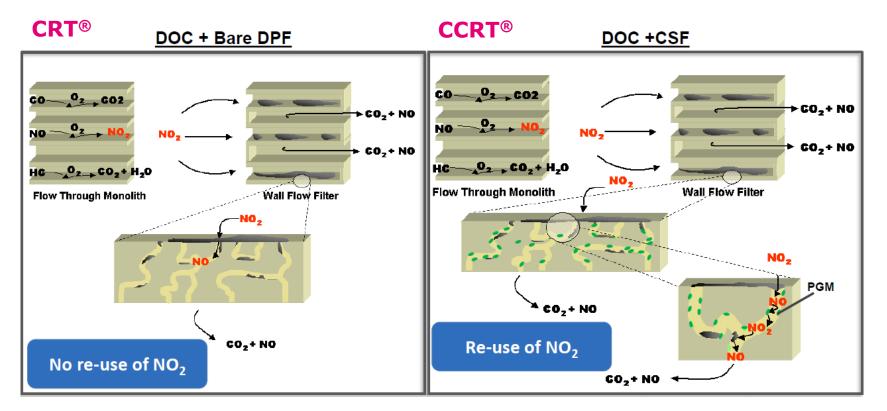



### Active Vs Passive Regeneration Strategy

### Filter to work effectively:

- Soot that builds up in the filter must be removed since it will cause an unfavourable increase in backpressure.
- This removal must occur during normal vehicle operation.

### Methods of soot removal (i.e. Regeneration)


- Passive regeneration This happens without external aid, during normal vehicle operation, NO<sub>2</sub> based soot burn
- Active regeneration Exotherm generated over DOC by burning additional fuel, triggered by system control unit, Oxygen based soot burn



Carbon burn experiment shows greater rate of oxidation to  $CO_2$ using  $NO_2$  rather than  $O_{2r}$  at lower temperatures

CRT<sup>®</sup> – Continuous Regeneration Trap CCRT<sup>®</sup> – Catalyzed Continuous Regeneration Trap

### Passive Regeneration: CRT<sup>®</sup> Vs CCRT<sup>®</sup>



Within the CRT<sup>®</sup> system the reaction sequence is:

 $\begin{array}{ccc} NO + \frac{1}{2}O_2 & \longrightarrow & NO_2 \\ 2 & NO_2 + C & \longrightarrow & 2 & NO + CO_2 \end{array} & (Pt on catalyst) \\ (on filter) \end{array}$ 

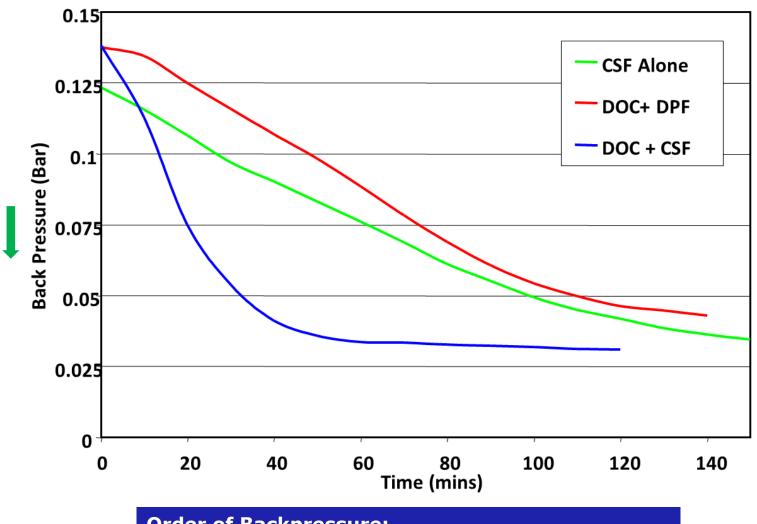
 Applying a catalyst coating to the DPF gives the possibility of re-use of NO:

$$\begin{array}{ccc} \mathsf{NO} + \frac{1}{2} \mathsf{O}_2 & \longrightarrow & \mathsf{NO}_2 \\ 2 \ \mathsf{NO}_2 + \mathsf{C} & \longrightarrow & 2 \ \mathsf{NO} + \mathsf{CO}_2 \end{array} & (Pt \ \text{on filter}) \\ (on \ \text{filter}) \end{array}$$

JM

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions Confidential testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

CCRT<sup>®</sup> = DOC + Catalyzed Filter Advantages of CCRT<sup>®</sup>:

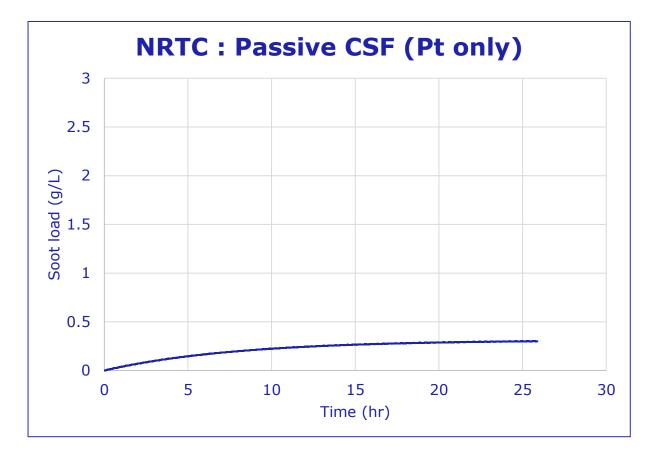

- ✓ Higher soot burn rate than CRT<sup>®</sup>
- ✓ Low temperature applications (200°C - 250°C)

7

 ✓ Low NOx/PM applications (NOx/PM>15)

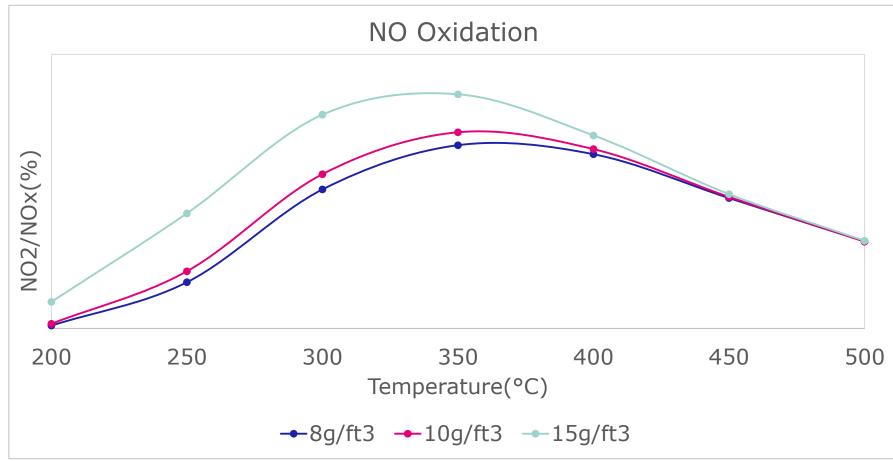
# CCRT<sup>®</sup> system helps in removal of soot in a faster way during elevated temperature exposure

- Soot loaded systems were exposed to 350°C catalyst inlet temperature;
- The change in pressure drop provide an idea about the rate of removal of carbon soot.




#### **Order of Backpressure:** CCRT<sup>®</sup> (DOC + CSF) < CRT<sup>®</sup> (DOC + Bare DOC) < CSF

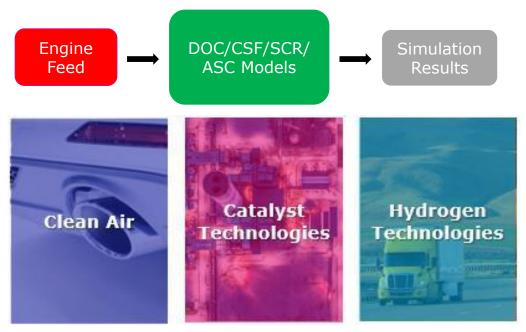
The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.


### How Modelling helps!!

- Balance point soot loading (BPSL): Rate of soot accumulation is matched by the rate of soot oxidation by NO<sub>2</sub>. BPSL is used to measure the effectiveness of passive soot oxidation.
- DPF takes longer time to reach the balance point and evolution of soot loading for DPF subjected to repeated transient drive cycle. Determining BPSL experimentally is extremely time consuming.
- One dimensional mathematical model used to determine BPSL for passive soot oxidation. This results in significant time, cost and resource saving.



### NO Oxidation: Passive Pt only DOC


### Conditioning: 550°C/4hrs-Hydrothermal ageing



The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

## JM Capability

- JM has an advantage of better technology of passive and active systems for Bharat Stage V.
- In-house Simulation Capability- Models available for DOC, CSF, SCR & ASC.
- Analytical Testing-Specific Surface Area Analyzer, XRF, ICP, ATR
- SCAT Testing & Oven Ageing Facility
- Less sample turn-around time Coating facility in India Time Saving and Cost Saving.
- Post-Mortem Analysis locally in short lead time
- Optimized Technical Solutions: H<sub>2</sub>-ICE, H<sub>2</sub>-Fuel Cells, Euro7, off-road, Genset





### JM

Catalysing the transition to net zero with our customers Confidential 11

### Summary

- Depending on the circumstances surrounding engine outage and the regeneration strategy/possibilities, both active and passive systems have a potential to achieve Bharat Stage-V emission targets.
- JM is a comprehensive solution provider of for both passive and active systems.
- JM prefers CCRT<sup>®</sup> system to meet Bharat TREM-V for < 56kW as compared to CRT<sup>®</sup>.
  - CCRT<sup>®</sup> system allows a more efficient use of the emitted for carbon combustion.
  - Order of Backpressure: CCRT<sup>®</sup> (DOC + CSF) < CRT<sup>®</sup> (DOC + Bare DPF) < CSF
  - Superior performance as compared to CRT<sup>®</sup> and CSF only system even at low CSF metal loadings, especially for
    - Low temperature applications
    - Application with a low NOx/PM ratio
- For low temperature duty cycle assisted passive/ active systems are preferred.
- All the JM technologies are validated and well proven for Bharat Stage-V.



### Thank you

JM

13