Bio-Fuels : Opportunity & Challenges

Session : Fuel & Fuel blends

ECMA 14th International conference - Leaping to Cleaner Air for Tomorrow

Mr. Ajay Kumar Vashisth

General Manager, Engineering

Nov 2nd, 2023

India's unique situation in Mobility

Next Powertrain Development directions

Bio-fuels : Opportunity & Challenges

Way forward

- Expectations from Emissions Control System
- Enablers for Bio-fuels

2

India today is shifting gears to become a major economy

- India: 5th largest Economy & 3rd Largest PV Market in World
- Mobility required to support the Economic progress to be become a Developed nation
- This growth story must be scripted with responsibility towards Environment

But there are challenges for Sustainable Development

Challenge of Energy Security & growing need for

- With 158 Bn \$ import bill, ~89% of crude oil is imported.
- Transport sector accounts for ~37% of crude consumption. PVs contribute ~4.3% of total
- Demand for fuel can potentially increase, impacting further the **Energy security concern**.

Mobility needs

- India is heavily under-motorized

India needs higher mobility for
 > Country's Economic development
 > Improve quality of life

Locally produced Biofuels can support

2 GHG & Local Emissions challenges

- India is the 3rd largest GHG emitter (behind CHINA & US) but Sectoral contributions are way different
- Passenger Vehicles in India contribute 2.2%, while 15% in EU towards overall country level GHG emission
- North and Gangetic plains also facing a Local pollution issue (weather & farm fire aggravate it)
- India must work for present challenges & sustainable paths for time bittonis stoture ground the

Biofuels can provide solution for both the above challenges also

Benefits of Bio-fuels

Supports agrarian economy & Reduce carbon footprint & crude oil imports

Govt's Multi pathway approach for mitigating concerns

Govt is pushing Auto Industry to adopt Alternate fuels/Energy to meet national GHG targets & Energy security

- Industry is developing and adopting vehicles with the policy of GOI
- Energy producers are also shifting to renewable fuel/energy availability

Source : Roadmap for Ethanol Blending in India

Source : https://satat.co.in/satat/#

* Projection based on 2020 & 2030 data of CEA

And realizing results as aimed.....

Multiple pathways of Bio-Fuels & electrification will help India Achieve Carbon Neutrality ensuring affordability

©2023Maruti Suzuki India Limited

India's unique situation in Mobility

Next Powertrain Development directions

Bio-fuels : Opportunity & Challenges

Way forward

- Expectations from Emissions Control System
- Enablers for Bio-fuels

©2023Maruti Suzuki India Limited

Carbon Intensity of bio-fuels

- Comparative CO₂ Impact based on carbon intensity of fuels reveals considerable potential by shifting to Bio-Fuels (Ethanol and Bio CNG)
- India has advantage over other regions in terms of Life cycle GHG emissions for Bio-fuels
- Based on Well to Tank emission intensity, India has advantage to utilize while also ensuring sustainable growth

Low Carbon Intensity Bio-fuels

Ethanol Lifecycle GHG (Lowest for India)

©2023Maruti Suzuki India Limited

Projection based on 2020 & 2030 data of CE

- To reduce GHG emission levels, progressive approach of implementing alternate technologies need to be adopted
- Carbon Neutral and Negative fuels have a potential to reduce transport sector GHG contribution
- Faster & Higher reduction in next decade is possible with full utilization of E20 and higher Blends (for FFV's)
- De-carbonisation of Grid electricity has to be a done before electrification really tap

Lifecycle GHG (for available configurations)

All Powertrain technologies will co-exist, contributing towards NET ZERO target of 2070.

India's unique situation in Mobility

Next Powertrain Development directions

Bio-fuels : Opportunity & Challenges

Way forward

- Expectations from Emissions Control System
- Enablers for Bio-fuels

Opportunity : India's Agriculture based Economy

MARUTI SUZUKI

Agriculture based Economy

- Huge potential for bio based low carbon energy sources Residue
- Opportunity to build agro based economy

Agriculture products & waste has huge potential

Bio-Ethanol Production Potential

(Capacity Augn	nentation (in Cr. Lt)					
Voor		Capacity Requirement					
Teal	Grain	Molasses	Total				
2019-20	258	426	684				
2020-21	260	450	710				
2021-22	300	519	819				
2022-23	350	625	975				
2023-24	450	725	1175				
2024-25	700	730	1430				
2025-26	740	760	1500				

Department of Food and Public Distribution(DFPD) estimates

1 tonne = 380ltr Ethanol, PIB 24 MAR 2021

Bio-CNG Production Potential

Source	Annual Waste (in Mn Metric Tonnes)	Bio-CNG generation per ton	Total Bio-CNG Generation Potential
Agricultural Waste	600	0.1	60
MSW	66	0.05	3.3
Sum Total I	Bio-CNG Potential	63.3	

Nomura

India has specific advantage to utilize Bio-Fuels while also ensuring sustainable growth of Economy

Opportunity : Ethanol \rightarrow Reducing GHG Emissions using E⁸ Fuel

MARUTI SUZUKI

Ethanol is Solar Energy in Liquid form

Opportunity : CBG is Carbon Negative fuel + Waste to Energy

63.3

Sum Total Bio-CNG Potential (MMT)

India is one of largest Methane emitters and adds to our GHG inventory. CBG can help.
 CBG can meet Major portion of Transport CNG need by 2025. Huge Potential to decarbonize mobility

CBG offers twin benefits: Waste to Energy along with GHG Reduction !

Sustainable alternative towards

affordable transportation (SATAT)

©2023Martei/33zuki India Limited

OGRAMME

Waste to

Energy programme

TING ORGANIC FLO-AGRO RESOURCES DHAN SCHEN

Gobar-Dhan Scheme

1 Challenges \rightarrow Ethanol availability

MARUTI SUZUKI

Difference b/w India & Brazil

53% National average blending → Brazil ensured <u>Robust Ethanol Adoption Model</u>

India's challenge for Ethanol availability is 5 ~ 15 times more than Brazil

MARUTI SUZUKI

©2023Maruti Suzuki India Limited

For Flex Fuel (E85) vehicles we need to go beyond this

Distilleries capacity required (2030) - 2500 cr ltr

Ramp-up of production Capacity required

Need clarity on future road map for Ethanol production beyond 2025 & including

FFV's

2 Challenge : Next Emissions Regulation, WLTP 2027

Tailpipe Emissions already nearing Zero

Next Emissions Challenge (WLTP)

		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
1	Emission Cycle Change	BSIV @	MIDC		BSVI	BSVI @ MIDC BSVI-2 @ MIDC		BSVI-2 @ WLTP								
2	RDE				Monit	Ionitor		Base)		Stiffer	r RDE + '	WLTP Ba	ased	\rangle		

Next Big Step for India : MIDC \rightarrow WLTP

MARUTI SUZUKI

Emissions cycle impact MIDC → WLTP 3P (India)

India's WLTP 3-Phase is stiffer than EU 4-Phase

- WLTP is tougher than MIDC
- WLTP 3P (India) is tougher than WLTP 4P (EU) (WLTP 4P is longer than WLTP 3P, Emissions are mainly at start)

Can we develop higher performance catalyst

- \rightarrow Low porosity >55%
- → Ethanol/Pet light-off <250 degC (OEM Aged)
- → CH4 light-off <350 degC (OEM Aged)</p>
- ightarrow Wider conversion window for CH4

20

2 Challenge : Regulations & Fiscal policy not aligned to P

6	INCLASSES.			
	NAR	SL	JZU	KI

Country / Region	Multi Pathway	Regulation Alignm	ent for Biofuels	Fiscal Policy alignment for Biofuels					
Region	Carbon Neutral (Bio-fuel + Electrification)	Emissions (тнс → NMOG/ NMHC)	CAFÉ (Biogenic CO2 Correction)	Bio-fuel price parity for energy	Bio-fuel vehicle Tax incentive (FFV etc)				
USA	0	0	0	0	0				
Brazil	0	0	О	0	0				
India	0	X 🛉	▼ × 🛉	▼ X ▼	X 🕈				
Europe	X	х	Х	X	X				
Present approach \rightarrow EV only from 2035, Not support Bio-fuels, E-fuels									

INDIA : Need to make enabling provisions for Bio-fuels adoption

2 Emissions regulation need to align for Bio-fuels

MARUTI SUZUKI

Enabling provisions for NMOG / NMHC instead of THC
 Bio-genic CO2 correction in CO2

MARUTI SUZUKI

Fiscal Policy support & Fuel availability roadmap

4 Technology & Development for Biofuels – E85 FFV

Engine HW changes require extensive Development (E20 to E85)

- Extensive Reliability tests at Proto and Final tooled up stages.
- Vehicle Calibration / Validation with intermediate fuel blends.
- As good as new development

4 Emissions : Ethanol Fuel Properties Challenge

MARUTI SUZUKI

<u>RON</u>

Possibility to Advance IGT

Oxygen Percentage

S

Higher Fueling flow required : Change in Components Sizing, Bigger Injectors etc

Key Issues with Flex Fuel : Cold Start ability, Fuel Adaptation and FE reduction

E10 : IS12796 E20 : IS17021 E20 : IS16634

4 Ethanol Challenges : Unburnt ethanol in tailpipe

MARUTI SUZUKI

Bio-fuel properties impact on tailpipe emissions

THC emissions are major issue for Higher Ethanol blends
→ Can we develop Ethanol Trap Catalyst or Ethanol specific Catalyst

Bio CNG challenges : Mitigating emission from tailpipe 4

Methane is difficult to convert and requires higher temperatures for conversion in TWC Ο Penalty of CO2 is there to meet THC emissions Ο

Conversion performance with Methane is much lower to Gasoline

Extra fuel is used to reduce THC

CO2 penalty

Current approach increases overall GHG emissions performance of vehicle also \rightarrow Make regulatory provision for NMHC / NMOG rather than THC (like US, Japan, Brazil)

©2023Maruti Suzuki India Limited

27

4 Bio CNG challenges : Regulatory scenario for Methane emissions

MARUTI SUZUKI

Methane is not pollutant : International markets regulate NMHC /NMOG pollutants not THC

	2	Tier 3 Certification Bin Standards (FTP, 150,000 mi)						
	Bin	NMOG+NOx (mg/mi)	PM ¹⁾ (mg/mi)	CO (g/mi)	HCHO (mg/mi)			
US FEDERAL	Bin 160	160	3	4.2	4			
	Bin 125	125	3	2.1	4			
TIER 3 STANDARDS	Bin 70	70	3	1.7	4			
	Bin 50	50	3	1.7	4			
	Bin 30	30	3	1.0	4			
	Bin 20	20	3	1.0	4			
	Bin 0	0	0	0	0			

Japan Emissions Regulation

TIER 2 FTP STANDARDS

			Test Mode	Unit	00	NMHC	NOv	DM1)
			10-15 Mode	n/km	0.67	0.08	0.08	THE .
	2000	Passenger Car	11 Mode	a/test	19.0	2.20	1.40	
	2002		10-15 Mode	g/km	3.30	0.13	0.13	
Charles Torres	2002	Mini Commercial Vehicle	11 Mode	g/test	38.0	3.50	2.20	
ew Short Term	2000	Light Commercial Vahiela (CV/W < 1.7.t)	10-15 Mode	g/km	0.67	0.08	0.08	
	2000	Light commercial vehicle (GVW 5 1.7 t)	11 Mode	g/test	19.0	2.20	1.40	
2001 2005	Madium Commercial Vahiela (1.7 + < C)(N < 2.5 +)	10-15 Mode	g/km	2.10	0.08	0.13		
	2001	Medium commercial vehicle (1.7 t < 67 W S 3.5 t)	11 Mode	g/test	24.0	2.20	1.60	
200 200 200 200 200 200	2005	Passenger Car			1.15			
and some Towns	2007	Mini Commercial Vehicle	1000	a flore	4.02		0.05	
ew Long Term	2005	Light Commercial Vehicle (GVW ≤ 1.7 t)	JCU8	g/km	1.15			
	2005	Medium Commercial Vehicle $(1.7 t < GVW \le 3.5 t)$			2.55	0.05	0.07	
		Passenger Car			1.15	0.05		
ost New Long	2000	Mini Commercial Vehicle	1009	allen	4.02		0.05	0.00
erm	2009	Light Commercial Vehicle (GVW ≤ 1.7 t)	ID-15 Mode g/km 0.6 110-15 Mode g/km 0.6 11 Mode g/test 19. 10-15 Mode g/km 3.3 11 Mode g/test 38. 10-15 Mode g/km 0.6 11 Mode g/test 38. 10-15 Mode g/km 0.6 11 Mode g/test 19. 10-15 Mode g/km 2.1 11 Mode g/test 24. 11 Mode g/test 24. JC08 g/km 4.0 JC08 g/km 1.1 JC08 g/km 4.0 JC08 g/km 4.0 JC08 g/km 1.1 QKm 1.1 2.5 UKTP g/km 4.0	1.15				
		Medium Commercial Vehicle $(1.7 t < GVW \le 3.5 t)$			2.55		0.07	0.00
	2018	Passenger Car			1.15			
New Short Term		Mini Commercial Vehicle	WITD	o/km	4.02	0.10	0.05	0.005
	2019	Light Commercial Vehicle (GVW ≤ 1.7 t)	WLIP	yrkin	1.15			
		Medium Commercial Vehicle $(1.7 t \le GVW \le 3.5 t)$			2.55	0.15	0.07	0.00

Passenger Cars and Light Duty Trucks \leq 8,500 lbs

CALIFORNIA	Durability (mi)	Emission Category ¹	NMOG+ NOx (g/mi)	CO (g/mi)	Formalde- hyde (g/mi)	Particulates ²⁾ (g/mi)
		LEV160	0.160	4.2	4	0.01
LEV III STANDARDS		ULEV125	0.125	2.1	4	0.01
	150,000	ULEV70	0.070	1.7	4	0.01
	(optional)	ULEV50	0.050	1.7	4	0.01
		SULEV30	0.030	1.0	4	0.01
	_	SULEV20	0.020	1.0	4	0.01

BRAZIL

Standard Vehicle NMHC CO NOx¹⁾ HCHO PM²⁾ (g/km)2.0 L5 0.12 (0.25) 0.02 0.05 PC L6 0.05 1.3 0.025 0.08 0.02 L73) 1.3 0.03 0.005 0.01 L5 2.0 0.12 (0.25) 0.05 0.02 LCV ≤ L6 1.3 0.03 0.05 0.02 0.08 1,700 kg L73) 1.3 0.005 0.03 0.01 2.7 0.25 (0.43) L5 0.04 0.06 LCV> 0.06 L6 2.0 0.25 (0.35) 0.03 0.04 1,700 kg L73) 1.3 0.05 0.01 0.05 0.015

Reconsideration of CH4 as pollutant, to be aligned as per international markets

"PROCONVE" STANDARDS FOR GASOLINE PC, LCV AND DIESEL LCV

India's unique situation in Mobility

Next Powertrain Development directions

Bio-fuels : Opportunity & Challenges

Way forward

- Enablers for Bio-fuels
- Expectations from Emissions Control System

29

Bio-fuel adoption in India : OEM perspective on way forward

MARUTI SUZUKI

Policy Enablers for Biofuels

- 1. Roadmap beyond 2025
 - Bio-fuel availability

2. Regulatory support

- CAFÉ : Biogenic CO2 accounting
- Emissions : THC → NMHC / NMOG

3. Customer Acceptability

- Price parity of Fuel as per energy
- Price parity for Vehicle cost
 Let's work together to achieve →Carbon Neutrality by Bio-fuels

Expectation from Emission Control System Partners

- 1.. Higher performance Aftertreatment system
 - Ethanol /Pet light-off <250 degC (OEM Aged)
 - CH4 light-off <350 degC (OEM Aged)
 - Wider conversion window for Bio-CNG / CNG
 - Low thermal mass substrate (>55% porosity)
- 2. HC Trap Catalyst with >30% emissions improvement
- 3. Alternate metal Catalyst to make it affordable
- 4. Focused Development for Biofuel's aftertreatment

Thank You

Maruti Suzuki WagonR E85 FFV proto

Suzuki Concludes a Three-Party Agreement for the Biogas Demonstration Project in India

- Operate four biogas production plants starting from 2025 -

©2023Maruti Suzuki India Limited

MARUTI SUZUKI

 \sim