

Emission Control for Future Heavy Duty Trucks and Buses

Aditya Bhimavarapu System Engineer Corning Environmental Technologies 03.11.2023

Information security

This presentation contains Corning information and is intended solely for those with a need to know. It may not be distributed, in whole or part, in any form by any means, or by any person or organization without authorization from Corning Incorporated.

Executive Summary

Executive Summary

- **D** Regulation Updates | Implications
- □ Advanced Filter Design | Component Level Readiness
- □ Future Ready EATS | System Level Readiness

Regulation Updates | Implications

Next Wave of Regulations | Euro7 HD proposal*

GHG / Pollutant Limits	Testing Methodology	Durability Requirements
$\square CO_2 15\% - 55\% \downarrow$	Primary mode of evaluation is On-Road Testing	No relaxation for aged catalyst
□ Detect & Count sub 23 nm PN □ PN > 70% \downarrow	Calculation of emissions to include low power, temperature MAWs	Very high clean filter PN FE
□ NO _x 56%↓ CO 51%↓	No conformity factors	Longer vehicle useful life
\square N ₂ O, HCHO will be regulated	Test conditions cover higher altitudes, all payloads	

* The European Commission proposal is still being debated and awaiting approval from European Parliament

Euro 7 HD Proposal | Risks from SPN perspective

SPN limits

- Warm Phase Limit reduced by 67%
- DEF particles detected as PN₁₀
- Interplay of NO_x, N₂O, NH₃ on dosing strategy
- and PN₁₀ levels

ISC Trip Design

- High NOx / Soot Rate \rightarrow high soot cake burn
- MAWs include ET < 30^o C (Cold Start)
- No minimum work

Existing DPF technology may be inadequate to meet Euro 7 commission proposal

Durability

- Longer useful life \rightarrow higher ash storage
- High ash increases regeneration frequency
- Soot fragmentation \rightarrow regeneration soot slip

Advanced Filter Design | Component Level Readiness

Challenge Cycle to evaluate DPF filtration performance

□ Comparison of NO_x – Soot Ratio [NSR] across a wide spectrum of engine technologies used worldwide.

NO_x – Soot Ratio [NSR] varied in the range of 50:1 [NA EGR engine] to 400:1 [non-EGR engine]

Conversion of an actual on-road truck duty cycle into an engine test bed cycle to understand scope of operation

For the operating region identified, cycles with varying NSR values developed keeping similar DPF inlet temperature profiles

Reference : SAE paper # 2023 – 01 – 0386

Impact of starting soot load

Testing Methodology

- □ Starting soot loads of 0 & 5g/l investigated
- ➡ High NSR cycle [NSR_{cc}~225] run back-to-back until the PN₁₀ slip hit a maximum
- Work based window analysis performed

Key Observation

- PN10 slip starting from a soot loaded condition exceeded proposed Euro 7 limit.
- Occurred at 2.5-3g/l soot load or ~50% regen eff. non uniform soot burn in DPF

Reference : SAE paper # 2023 – 01 – 0386

Peak PN slip across DPF technologies

Reference : SAE paper # 2023 – 01 – 0386

Advanced DPF technologies exhibit high filtration

 \Box DPFs tested using Cycle-A over NSR_{cc} ~40 to ~250

 \square ~1.5x increase in burn rates for a ~6x increase in ${\rm NSR}_{\rm cc}$

Reference : SAE paper # 2023 – 01 – 0386

Future Ready EATS | System Level Readiness

HD Vehicle Emissions Study | Vehicle | EATS

Manufacturer	Scania
Rated Power	350 kW
Rated Speed	1700 rpm
Engine Volume	12.8 L
No. of Cylinders	6

OEM EATS – DOC + DPF + SCR/ASC

Two system configurations tested

Reference : https://doi.org/10.3390/ atmos13101682

HD Vehicle Emissions Study | Test Cycles

World Harmonized Vehicle Cycle (Short Trip)

- WHVC is the chassis dyno surrogate of the WHTC engine testing cycle
- WHVC cold and hot cycle emissions weighted as 14% and 86% respectively to get the final value

- ISC In Service Conformity (Long Trip)
- ISC developed by JRC European Commission to test heavy duty vehicle emissions
- □ ISC is split into urban (21.7%), rural (26.4%), motorway (46.5%).
- MAW methodology used to evaluate overall emissions

Reference : <u>https://doi.org/10.3390/</u> atmos13101682

HD Vehicle Emissions Study | ISC Second by Second Data

Key Observations :

CORNING

- A. Two mechanisms for SPN emissions post primary DPF
 - □ DPF in clean state not enough soot cake formed
 - Passive Regeneration soot slip through partially burnt soot cake layer

B. SCR dosing in warm phase causes spike in SPN count due to non-volatile DEF particles

C. Use of secondary DPF can reduce the SPN count by more than two orders of magnitude

Reference : <u>https://doi.org/10.3390/</u> atmos13101682

HD Vehicle Emissions Study | ISC Cumulative Results

Key Observations :

- A. Existing BS6 level technology for DPF is not enough to meet the proposed Euro 7 level emission targets.
- B. High filtration DPF reduces the SPN levels by more than one order of magnitude.
- C. Urea particles generated in the warm phase of ISC increase the SPN levels beyond the limit.
- D. A dedicated secondary DPF downstream of SCR reduces the SPN levels by more than two orders of magnitude

Reference : https://doi.org/10.3390/ atmos13101682

Key Takeaways

Euro 7 commission proposal will require a step change in the system configuration layout

Ultra high efficiency filters will be required to limit soot slip during passive regeneration conditions

Non-volatile urea nanoparticles contribute significantly to the PN₁₀ count. If not controlled by the dosing strategy, a secondary DPF downstream of SCR may be required to capture them