

Thermal Shock Risk of DPF for Indian Market Application

Emission regulation and voice of DPF system

Necessity of DPF robustness in the market

Working vehicle

If DPF trouble happen due to low robustness design, vehicle doesn't perform normally, and have to stop until parts are changed* in a worst case. *Additional cost

Passenger car : There are substitute public transportation (Train, Bus, Taxi, Ship and Air-plain) Working vehicle : No substitute measure → Work has to stop. →High influence against end users

High robustness DPF is needed and IBIDEN can contribute to it by R-SiC DPF
 It can also contribute end-users' satisfaction.

Reality of Indian use

Cool ATS state (Idle~low speed)

On-road vehicle (Regulation on going)

 Heavy traffic jam often occurs in India, and vehicles kept longtime under idle/low speed.

Pumping water (Long time idle/low load) (Long time idle) (Long time idle)

◆ Warm up ◆ Waiting for dump truck

One of the phenomenon behind regeneration troubles 5/9

✓ HC will be supplied from DOC to DPF
 →HC oxidation will cause exotherm

HC desorption amount on DOC at idle condition

Table test condition

Engine/ATS	Passenger car	
Idle time	0hr, 4hrs	
HC desorption temperature	From 150degC to 400degC	

Test flow

Pre-treatment: Clean DOC @ gas temperature 600degC

Test start: No idle & 4hrs idle treatment

Increase temperature by post injection for HC desorption

Measure HC desorption amount by gas analyzer while increasing temperature from 150degC to 400degC

Influence of HC desorption from DOC during DTI test 7/9

- R-SiC showed 2~3g/L higher soot mass limit even though wall thickness of R-SiC was thinner than that of Cord.
 When comparing SML with 4hrs idle and without idle, 4hrs idle condition had shown lower SML.
- ✓ When comparing SML with 350degC and 620degC DTI temp., 350degC had shown lower SML despite that normal DTI temperature is usually ≥600degC

Influence of HC desorption and trigger temperature against DTI 8/9

DPF type in NR Asian market and customer voice of R-SiC user 9/9

China NR market

■ SiC is mainly used in small~middle engine

Fig. DPF substrate selection in power category*

*JPN/CHN NR OEMs(Major player of Small ~ middle size engine) CICEIA , OEM info. and IBIDEN assumption data

R-SiC can unify system and reduce development cost with enough safety margin!

Engine	Calibration	Other	DPF	
			Cord	R-SiC
A	1:Torque peak@ 1500 rpm		Туре А	Type A
	2:Torque peak@ 2200 rpm			
	3:Torque peak@ 2800 rpm		Туре В	
	4:Torque peak@ 2200 rpm	With Turbo	Туре С	

Thank you for your attention. Let us support you more !!

IBIDEN Co., Ltd.

Fundamental safety design way considered with market use

 Parts is used for a long time in market, so to design stage includes performance from market release to life-end, and should be considered safety margin for lots deviation.

11/9

To design system with safety margin contributes reducing OEM's after service and increasing end user satisfaction

Characteristic of DPF Substrate (Benefit of R-SiC)

- R-SiC's high heat capacity and thermal conductivity contributes to DPF thermal robustness to provide regeneration repeatability and higher maximum regen soot load amount.
- Sharp pore distribution contributes on PM filtration performance.

<u>Appendix</u> Other deviation element should be considered for DPF

Ref.)Performance deterioration by i.g.:Ash

✓ Soot burned ash deposits on the filter step by step in use, and affect impact for performance 1:Ash decreases effective DPF volume and makes regeneration interval short. 2:Ash is composed by some material and it gives damage for substrate

Ash affection to SML

Example DPF size : D6.77x6"L (Volume: 3.5L) In case require SML is 14g/F(4g/L).

Table SML comparison

Ash affection to substrate material

R-SiC has high chemical resistance

Blue : Clear Red : Not clear for Target SML

->broken filter, PN leak

Ref.) SML design considered with deviation

- ✓ Filtrated soot is deposited in the filter , and soot amount is detected by back pressure in generally.
- ✓ So back pressure deviation leads to miss detection of soot amount, and which in turn over soot load as possibility.
- ✓ To have margin considered with deviation is needed for avoiding regeneration failure

One of the phenomenon behind regeneration trouble 16/9

Diesel basic ATS

Traffic Jam

✓ HC will be supplied from DOC to DPF
 →HC oxidation will cause exotherm

Possibility of occurrence these condition in Non-road segment 17/9

 Safety design system considered with multi use condition should be applied for Non-road, and R-SiC can contribute its DPF system design.