SCALABLE OPTIMISED AFTERTREATMENT SYSTEMS FOR TREM V

ROLF BRÜCK, PARESH LADDHA

ECT 2023; New Delhi, 2/3.11.2023

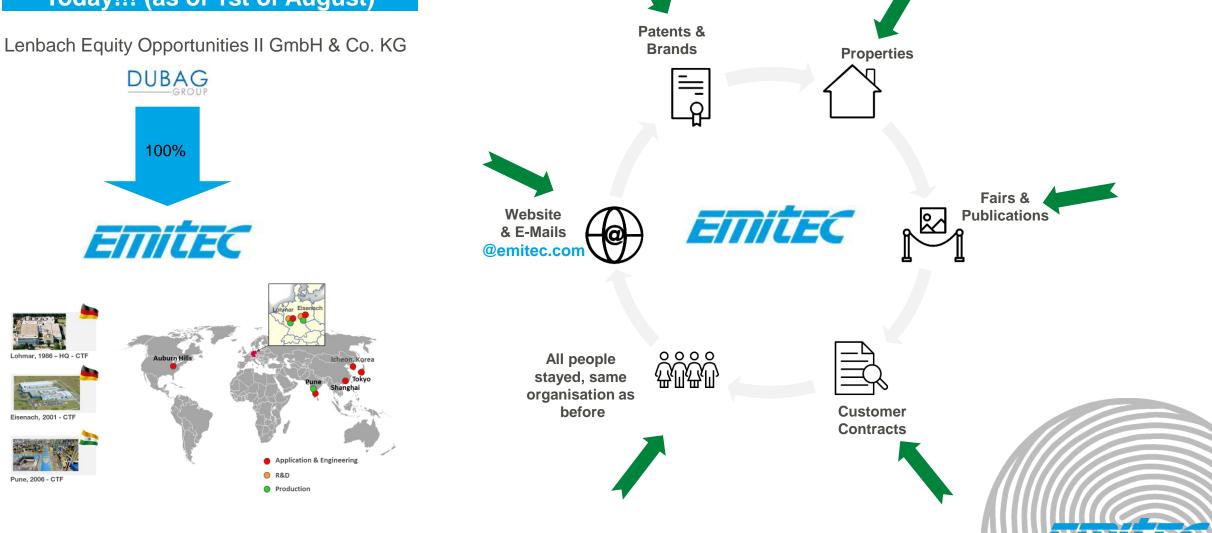
Public

NEW EMITEC TECHNOLOGIES GMBH

- EMISSION LEGISLATION NRMM
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT
- EMITEC SOLUTIONS FOR TREM V
- CONCLUSION

START OF "EMITEC TECHNOLOGIES GmbH"

Change of Ownership



START OF "EMITEC TECHNOLOGIES GmbH"

Change of Ownership

Today!!! (as of 1st of August)

EMITEC TECHNOLOGIES GMBH

SAME NAME NEW MEANING

• EMITEC

Emission Technologies

Mission: trusted partner of choice <u>for solutions across</u> and beyond <u>emission technologies</u>

EMITEC TECHNOLOGIES GMBH

SAME NAME NEW MEANING

Emission Technologies

● EMITEC Technologies

Products **beyond** Automotive Emission Technologies

Mission: trusted partner of choice <u>for solutions</u> across and <u>beyond emission technologies</u>

EMITEC BEYOND AUTOMOTIVE EMISSION TECHNOLOGY ACTUAL EXAMPLES

https://emitec.com/ Emitec.com – we live and breathe innovation

Stationary, Industrial Catalyst

Solar Receiver

(+7% efficiency)

Anna and a second

Wooden Fire Filter Catalyst

- NEW EMITEC TECHNOLOGIES GMBH
- **EMISSION LEGISLATION NRMM**
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT
- EMITEC SOLUTIONS FOR TREM V
- CONCLUSION

OVERVIEW TIMING

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
EU	EU Stage	e IIIB			EU Stag	e IV			EU Stag	ge V					
US	US T4i			US T4f							US	Т5			
India	Trem III												Trem IV	Tre	em V

today

OVERVIEW EMISSION LIMITS

Europe St	tage	Ve	miss	sion	stan	dards
Power	Date	со	НС	NOx	PM	PN
kW	Date	g/kИ	/h			1/kWh
P < 8	2019	8.00	7.5		0.40 ^b	-
8 ≤ P < 19	2019	6.60	7.5) ^{a,c}	0.40	-
19 ≤ P < 37	2019	5.00	4.70		0.015	1×10 ¹²
$37 \le P < 56$		5.00	4.70) ^{a,c}		1×10 ¹²
$56 \le P < 130$						
$130 \le P \le 560$	2019	3.50	0.19 [°]	0.40	0.015	1×10 ¹²
P > 560 ^a HC+NOx	2019	3.50	0.19 [°]	3.50	0.045	-
^b 0.60 for har	nd-stai	table	, air-cc	oled	direct i	njection
engines ° A = 1.10 for	aas e	naine	s			
d A = 6.00 for						

India Trem and CEV Stage IV - V emission standards

Date	со	HC	NOx	PM	PN						
	g/kWl	1/kWh									
Trem Stage IV and CEV Stage IV											
CEV:	5.0		.7*	0.025	-						
2021.04 Trem:	5.0	0.1 9	0.4	0.025	-						
2022.10	3.5	0.1 9	0.4	0.025	-						
V and CEV St	tage V										
2024.04	8.0	7	.5*	0.4							
	6.6	7	.5*	0.4	_						
	5.0	4	.7*	0.015	1×10 ¹²						
	5.0	4	.7*	0.015	1×10 ¹²						
	5.0		0.4	0.015	1×10 ¹²						
	3.5	0.1	0.4	0.015	1×10 ¹²						
	3.5	0.1	3.5	0.045	-						
	V and CEV S CEV: 2021.04 Trem: 2022.10 V and CEV S	Jate g/kW/ V and CEV Stage IV 5.0 2021.04 5.0 Trem: 2022.10 2022.10 3.5 / and CEV Stage V 2024.04 2024.04 8.0 6.6 5.0 5.0 5.0 3.5 3.5	Jate g/kWh V and CEV Stage IV 5.0 4 2021.04 5.0 0.1 Trem: 9 3.5 0.1 2022.10 3.5 0.1 9 / and CEV Stage V 2024.04 8.0 7 6.6 7 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 1 9 3.5 0.1 9	Jate g/kWh V and CEV Stage IV 5.0 4.7* 2021.04 5.0 0.1 0.4 Trem: 2022.10 3.5 0.1 0.4 2022.10 3.5 0.1 0.4 9 V and CEV Stage V 2022.10 3.5 0.1 0.4 9 3.5 0.1 0.4 9 V and CEV Stage V 2024.04 8.0 7.5* 5.0 4.7* 5.0 4.7* 5.0 4.7* 5.0 4.7* 5.0 4.7* 5.0 0.1 0.4 9 3.5 0.1 0.4 9 3.5 0.1 0.4 9	Date g/kWh V and CEV Stage IV 0.025 CEV: 5.0 4.7^* 0.025 2021.04 5.0 0.1 0.4 0.025 2022.10 3.5 0.1 0.4 0.025 2022.10 3.5 0.1 0.4 0.025 9 0.1 0.4 0.025 9 3.5 0.1 0.4 0.025 9 3.5 0.1 0.4 0.025 9 3.5 0.1 0.4 0.025 9 3.5 0.1 0.4 0.025 9 3.5 0.1 0.4 0.025 5.0 4.7^* 0.015 5.0 4.7^* 0.015 9 3.5 0.1 0.4 0.015 9 3.5 0.1 0.4 0.015 9 3.5 0.045						

* NOx + HC

> Trem: the agricultural machinery standard

> CEV: the construction equipment vehicles standard

OVERVIEW EMISSION LIMITS

Europe S	tage	V e	miss	sion	stan	dards
Power	Date	со	HC	NOx	PM	PN
kW		g/kN	/h			1/kWh
P < 8	2019	8.00	7.50		0.40 ^b	-
8 ≤ P < 19	2019	6.60	7.5) a,c	0.40	-
19 ≤ P < 37	2019	5.00	4.7	a,c	0.015	1×10
37 < P < 56	2019	5.00	4.70	<u>)</u> (0.015	1×10
$56 \le P < 130$						10
$130 \le P \le 560$	2019	3.50	0.19ຼັ	0.40	0.015	1×10 ¹²
P > 560	2019	3.50	0.19ັ	3.50	0.045	-
^a HC+NOx						
^b 0.60 for har engines	nd-star	table	, air-cc	oled	direct i	njection
° A = 1.10 for	das e	naine	\$			
d A = 6.00 for						

India Trem and CEV Stage IV - V emission standards

Power	Date	со	HC NOx		PM	PN	
kW		g/kWh			1/kWh		
Trem Stage	V and CEV S	Stage IV	/				
$37 \le P < 56$		5.0		.7*	0.025	-	
56 ≤ P < 130	2021.04 Trem:	5.0	0.1 0.4		0.025	-	
130 ≤ P < 560	2022.10 P <		9 0.1 9	0.4	0.025	-	
Trem Stage '	V and CEV S [.]	tage V					
P < 8	2024.04	8.0	7	.5*	0.4		
8 ≤ P < 19		6.6	7.5*		0.4	-	
<u> 10 ≤ P < 37</u>		5.0	4	.7	0.015	12 1 × 10	
37 ≤ P < 56		50	1 7*		0.015	12	
56 ≤ P < 130		5.0	0.1 9	0.4	0.015	1×10 ¹²	
130 ≤ P < 560		3.5	0.1 9	0.4	0.015	1×10 ¹²	
P ≥ 560		3.5	0.1	3.5	0.045	-	

* NOx + HC

> Trem: the agricultural machinery standard

> CEV: the construction equipment vehicles standard

Focus on 37 kW < P < 56 kW engines

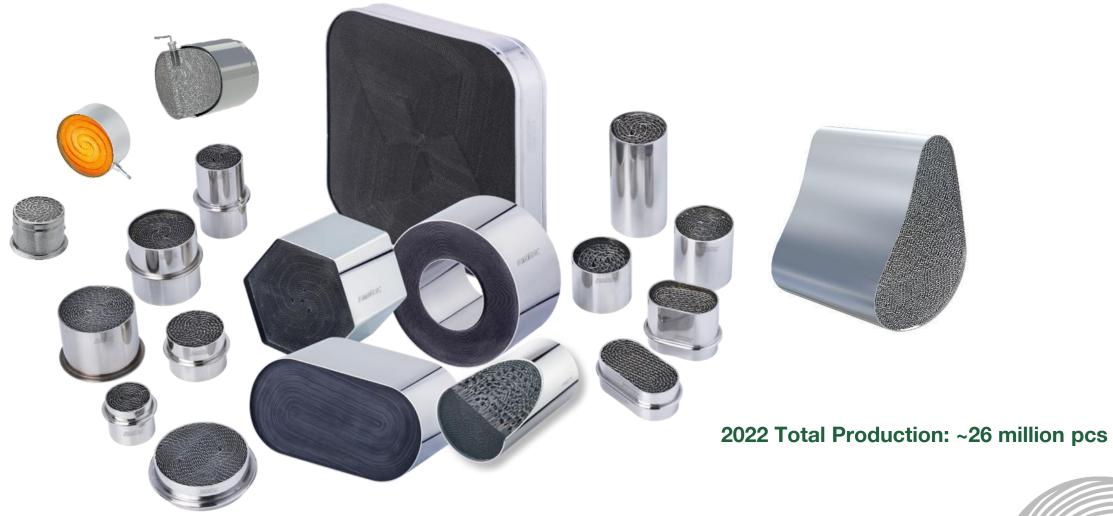
OVERVIEW EMISSION LIMITS

	Europe	Stage V emission	standards	India	emission			<u> </u>	V - V	
	Power kW	Date CO HC NOx		Power <i>kW</i>						ſh
	P < 8 8 ≤ P < 19	2019 8.00 7.50 ^{a,c} 2019 6.60 7.50 ^{a,c}	0.40 ^b - 0.40 -	Trem Stage 37 ≤ P < 56		Stage IV 5.0		.7* 0.0)25 -	
		;	37 kW < P <	56 kW						
		CO [g/kWh]	HC [g/k	(Wh] + N	Ox [g/k\	/Vh]		P	PN [1/k	(Wh]
India TREM V		5		4,7					1x1C)12
EU Stage V	/	5		4.7					1x10)12
		for <u>gas engines</u> for <u>gas engines</u>		56 ≤ P < 130 130 ≤ P < 560		5.0 3.5	9)15 1×10)15 1×10	12
In t		gine class					9		-	

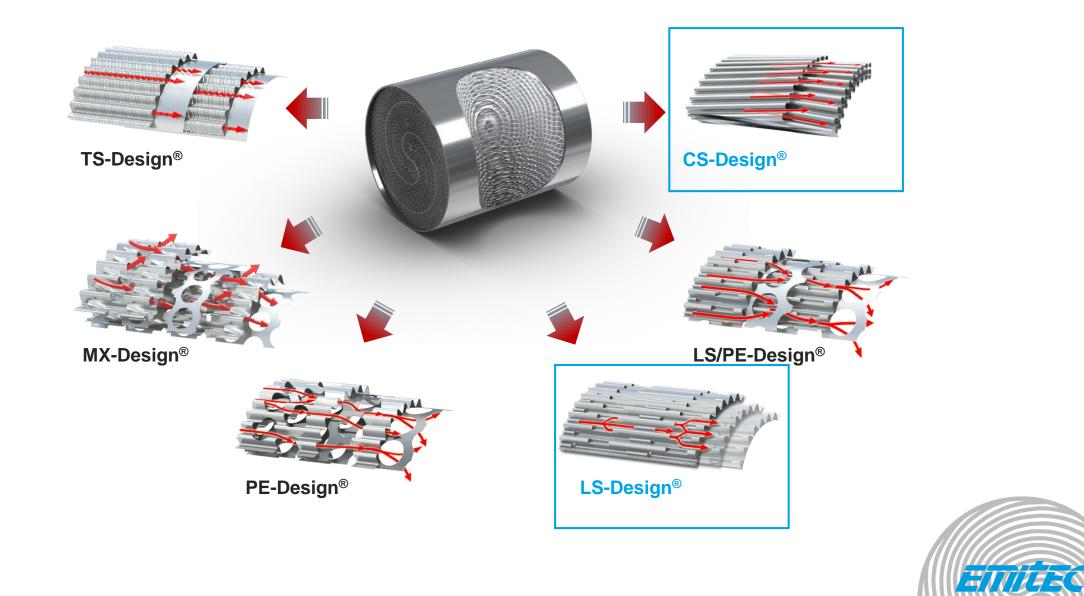
a DOC + DPF System is needed to fullill the worldwide limits

> CEV: the construction equipment vehicles standard

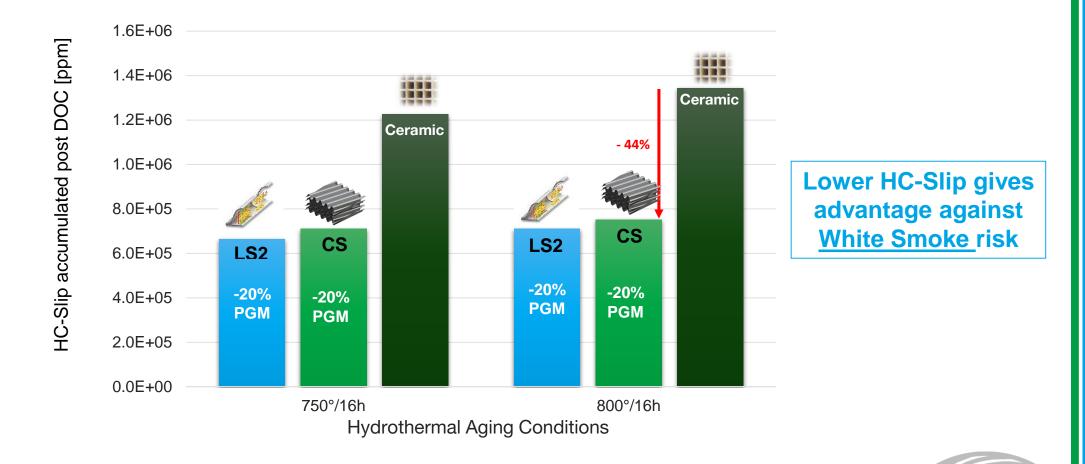
India Trom and CEV Stage IV - V



- NEW EMITEC TECHNOLOGIES GMBH
- EMISSION LEGISLATION NRMM
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT
- EMITEC SOLUTIONS FOR TREM V
- CONCLUSION


METAL SUBSTRATES PRODUCTION-PORTFOLIO

SHAPES, SIZES AND PACKAGING – FROM CHAINSAW TO LOCOMOTIVE



METALIT®: TURBULENCE GENERATING STRUCTURES

HC-SLIP DURING ACTIVE REGENERATION

OPEN CELL STRUCTURE COMPARED TO STRAIGHT CHANNEL SUBSTRATES

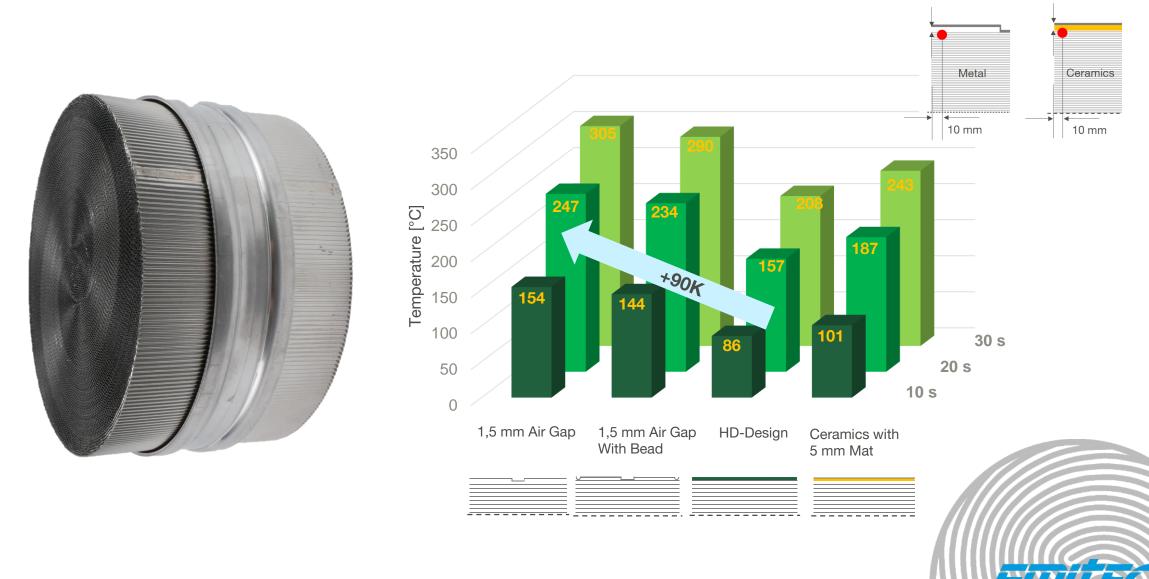
HILLES

~20% lower Precious Metal (PGM) on Metal Substrates

public

NEW CATALYST DESIGN

SUBSTRATE WITHOUT MANTLE



INFLUENCE OF NEW SUBSTRATE DESIGN ON EDGE TEMPERATURE

COMPARISION OF VARIOUS DESIGNS; DIA 115 X 120 mm / 600 cpsi / 40µm; Ce: 600/4 mil

NEW CATALYST DESIGN

SUBSTRATE WITHOUT MANTLE AND CS-FOILDESIGN

EMICAT® "EHC" AND HEATING DISC "EHD" PROVEN DESIGN

Electrically Heated Catalyst EHC

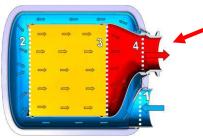
- Proven design
- more than 160.000 pcs in the field since 2014

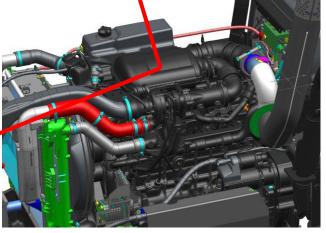
Heating power: Pass Car: up to 6 kW Truck: up to 10 kW

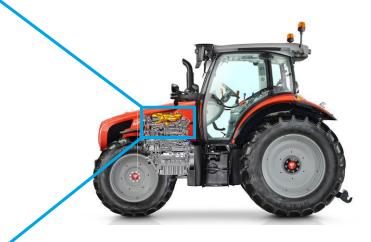
Electrically Heated Disk EHD

- Based on proven EHC design and production machines and process for PC, Trucks and NRMM

- NEW EMITEC TECHNOLOGIES GMBH
- EMISSION LEGISLATION NRMM
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- **TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT**
- EMITEC SOLUTIONS FOR TREM V
- CONCLUSION


MORE STRINGENT EMISSION LEGISLATION


CHALLENGES FOR ENGINE AND EATS APPLICATION



Scalable DOC solution for Stage V with optimized Thermal management

MORE STRINGENT EMISSION LEGISLATION

CHALLENGES FOR ENGINE AND EATS APPLICATION

TODAYS ACTUAL TREM IV EXHAUST SYSTEMS WITH DOC

37 < P < 56 kW; DOC System

TODAYS ACTUAL TREM IV EXHAUST SYSTEMS WITH DOC

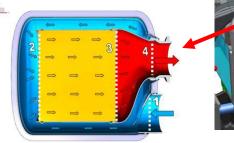
37 < P < 56 kW; DOC System

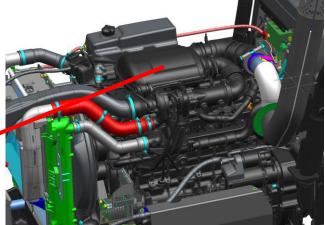
Challenge:

Installation of TREM V DOC + DPF System in the given space under the hood

- NEW EMITEC TECHNOLOGIES GMBH
- EMISSION LEGISLATION NRMM
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT

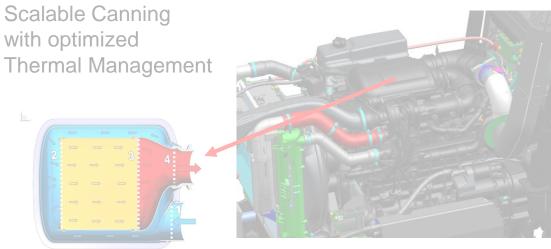
I EMITEC SOLUTIONS FOR TREM V

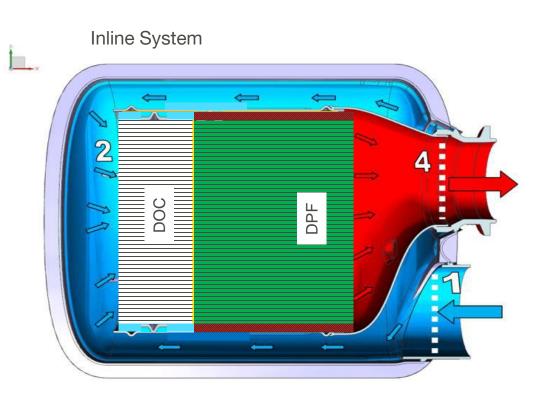

CONCLUSION



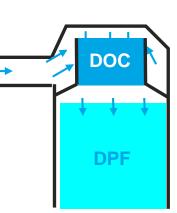
INTEGRATED INLINE METALIT SOLUTIONS LEARNING FROM PASS CAR PRODUCTION **SYSTEMS I**

Scalable Canning with optimized Thermal Management



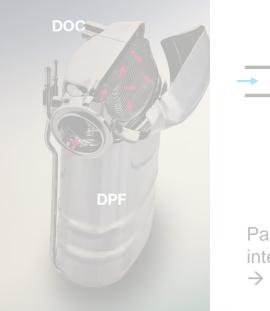


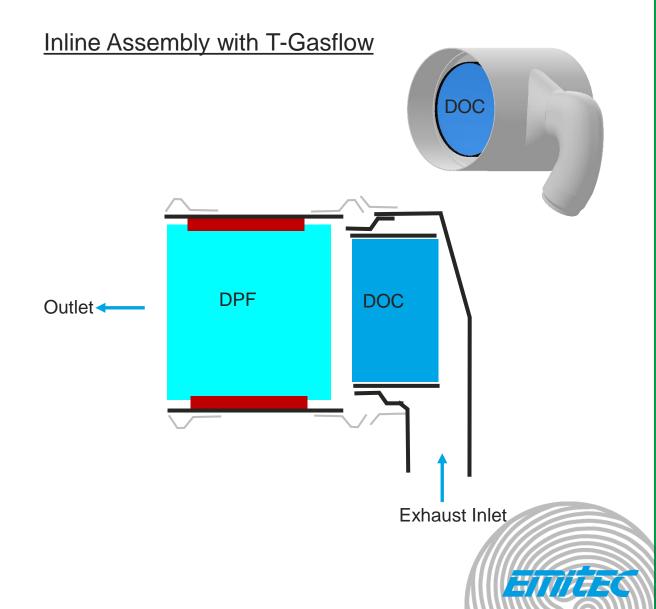
INTEGRATED INLINE METALIT SOLUTIONS LEARNING FROM PASS CAR PRODUCTION **SYSTEMS I**


Gas inlet and gas outlet on one side

INTEGRATED COMPACT METALIT SOLUTIONS

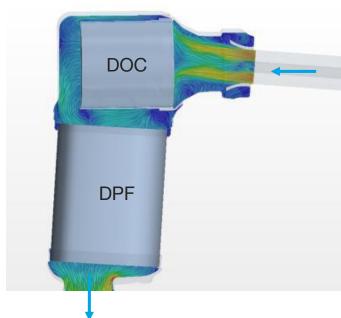
LEARNING FROM PASS CAR PRODUCTION SYSTEMS II


Passenger cas system with integrated flow path
→ DOC "bedded" in housing and heated by gas


INTEGRATED COMPACT METALIT SOLUTIONS

LEARNING FROM PASS CAR PRODUCTION SYSTEMS II

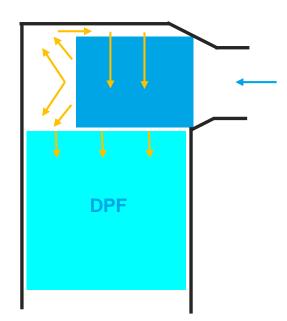
Passenger cas system with integrated flow path → DOC "bedded" in housing and heated by gas



COMPACT CATALYST METALIT SOLUTIONS

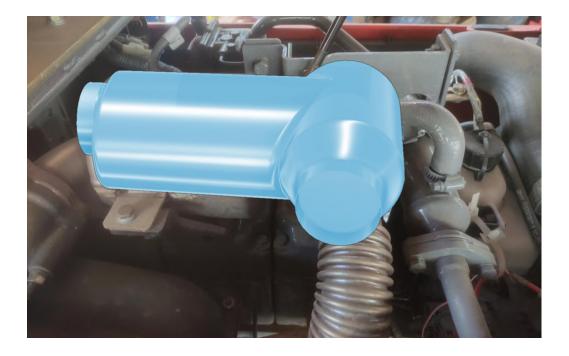
LEARNING FROM PASS CAR PRODUCTION SYSTEMS III

Passenger cas system with gas-flow arround the DOC for optimum temperature distribution


COMPACT CATALYST METALIT SOLUTIONS LEARNING FROM PASS CAR PRODUCTION **SYSTEMS III**

Passenger cas system with gas-flow arround the DOC for optimum temperature distribution

T-Shape Assembly with T-Gasflow



TRANSFER FROM PROVEN EU-DESIGNS TO TREM V APPLICATIONS EUROPE => INDIA TREM V

Engine Specification

Power : 63 HP (48.47 kW @ 2100 rpm) No. Of Cylinders : 3 Displacement 3478 cc

T-Shape Assembly with T-Gasflow

TREM V DOC + DPF fits in the same assembly space as the TREM IV System

TRANSFER FROM PROVEN EU-DESIGNS TO TREM V APPLICATIONS EUROPE => INDIA TREM V

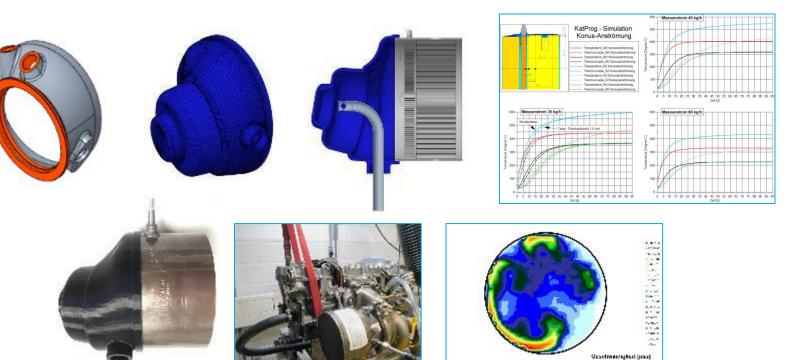
Engine Specification:


Power : 63 HP (46 kW @ 2100 rpm) No. Of Cylinders : 3

Inline System with T-Gasflow

- NEW EMITEC TECHNOLOGIES GMBH
- EMISSION LEGISLATION NRMM
- ADVANCED METAL SUBSTRATE TECHNOLOGY
- TRACTOR APPLICATION CHALLENGE AND EXHAUST SYSTEM LAYOUT
- EMITEC SOLUTIONS FOR TREM V
- ONCLUSION

COMPACT EMISSION CONTROL SYSTEM ALSO FOR SCR


WITH RING METALIT[®] CATALYST AND ADBLUE[®] INJECTION; >150.000 Systems produced

DEVELOPMENT SUPPORT BY EMITEC TECHNOLOGIES

Development Service (CAD / CAE / Concept Development)

Rapid-Prototyping (as plastic part for pre examinations e. g. flow distribution)

Functional samples from metal e.g. casted, metal printed, Complete exhaust systems für test on engine test bench or vehicle testing)

Detailed reporting of test and analysis results

