
Vehicle Standards and Technology Solutions in the US for 2027 and Beyond

> Dr. Rasto Brezny Emission Control Technologies 2023

> > New Delhi, India

MECA – Technologies for Clean Mobility

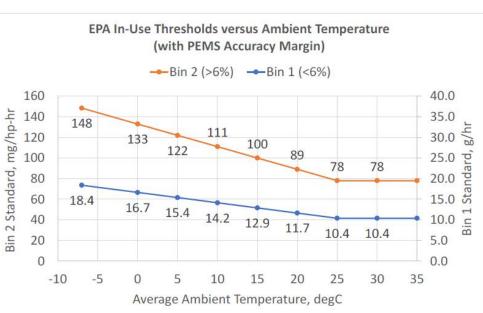
Outline

- Heavy-duty GHG and Pollution Regulations Adopted and Proposed
- Light-duty GHG and Pollution Regulations Adopted and Proposed
- CARB Nonroad Tier 5 regulation under consideration
- Role of technology demonstrations to support regulations

CARB and EPA Clean Truck Regulation for Criteria Pollutants

	CARB - HHD			EPA - HHD
	MY 202	27-2030	MY 2031+	MY 2027+
Duty Cycle	Intermediate Useful Life 435,000 miles	Full Useful Life 600,000 miles	Full Useful Life 800,000 miles	Full Useful Life 650,000 miles (750,000 miles cert tested)
FTP (mg/hp-hr) RMC (mg/hp- hr)	20	35	40	35
LLC (mg/hp-hr)	50	90	100	50
ldle (g/hr)	5	5	5	10

Two-Bin Moving Average Window – Bin 1 is <6% engine power and Bin 2 is >6% engine power


Interim compliance margin of 15 mg/hp-hr for in-use field or lab compliance testing

PEMS accuracy margin of 5 mg/hp-hr for in-use testing with PEMS

PM standard = 5 mg/hp-hr for FTP/RMC/LLC cycles

NMHC standard = 60 mg/hp-hr for FTP/RMC/LLC cycles

*Ambient temperature correction (above figure)

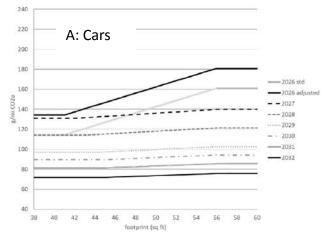
Chris Sharp (SwRI) presentation to MECA January 4, 2023

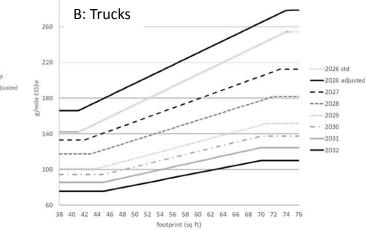
EPA Proposed HD GHG Phase 3 Standards

- Vehicle CO₂ standards are "performance based" to be met by mix of EVs, hybrids, hydrogen, engine technology or advanced ICE in GEM
- EPA anticipates that a compliant fleet will include a diverse range of ICE and ZEV vehicle technologies.
- BEVs, FCEVs and H2-ICE considered as zero CO₂ emissions
- An all electric pathway would require in 2032:
 - 50% EV in Vocational
 - 35% EV in Short Haul
 - 25% EV in Long Haul

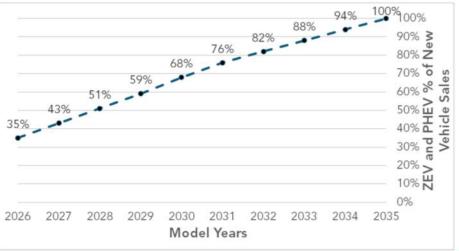
2027 Ph 2 & Proposed Tractor Standards (grams/ton-mile)

Model Year	Roof Height	Class 7 All Cab Styles	Class 8 Day Cab	Class 8 Sleeper Cab
	Low Roof	104	80	66
Phase 2 2027	Mid Roof	115	- 86	73
	High Roof	12020	89 -6	<mark>%</mark> 72
	Low Roof	86.6	66.1	64.1
Phase 3 2027	Mid Roof	93.1	70.2	69.6
	High Roof	90.0	68.1	64.3
	Low Roof	63.5	48.4	48.1
Phase 3 2032+	Mid Roof	68.2	51.5	52.2
	High Roof	66.0	50.0	48.2


2027 Ph 2 & Proposed Vocational Standards (grams/ton-mile)


Model Year	Subcategory	Cl Light Heavy	Cl Medium Heavy	Cl Heavy Heavy	SI Light Heavy	SI Medium Heavy	
	Urban	367	258	269	413 –	297	
Phase 2 2027	Multi-Purpose	330	235	230	372	268	
	Regional	291	218	189	319	247 0% -17	70/
	Urban	294	213	9% -10 232	6% -2 340	0% -17 252	70
Phase 3 2027	Multi-Purpose	257	190	193	299	223	
	Regional	218	173	152 _	246	202	
	Urban	179	176	177	225	215	
Phase 3 2032+	Multi-Purpose	142	153	138	184	186	1
20321	Regional	103	136	97	131	165	

EPA's Multipollutant LD standards include GHG limits


EPA's Performance Based CO2 Fleet Average standards remain footprint based

	Light-Duty Vehicles (CO ₂ , g/mile)				
Model Year	Cars	Trucks	Fleet		
2026 adjusted	152	207	186		
2027	134	163	152		
2028	116	142	131		
2029	99	120	111		
2030	91	110	102		
2031	82	100	93		
2032+	73	89	82		

Mandated ZEV Sales in California States

U.S. EPA EV Compliance Scenario

	2027	2028	2029	2030	2031	2032
Sedans	45%	53%	61%	69%	73%	78%
SUVs	38%	46%	56%	59%	61%	62%
Pickups	11%	23%	37%	45%	55%	68%
Total	36%	45%	55%	60%	63%	67%

Two approaches to criteria standards from Passenger Cars in U.S.

EPA Set Performance Standards and allow EVs in Fleet Average at 0 g/mile

		0	0,	
Model Year	LDV, LDT1, LDT2 NMOG+NOx (mg/mi)		LDT3, LDT4 NMOG+NO	·
	Default	Early	Default	Early
Tier 3	30*		30*	30*
2027	22		30*	22
2028	20		30*	20
2029	18		30*	18
2030	16		12	16
2031	14		12	14
2032+	12		12	12

U.S. Bin Structure for Fleet Average

Bin	NMOG+NOx (mg/mile)
Bin 160[*]	160
Bin 125 *	125
Bin 70	70
Bin 60	60
Bin 50	50
Bin 40	40
Bin 30	30
Bin 20	20
Bin 10	10
Bin 0	0

CARB Phasing out ZEVs from Criteria Standards

Model Year	NMOG + NOx Fleet Average	% of ZEVs Allowed in average
Pre-2025	0.030 g/mile	100
2026	0.030 g/mile	60
2027	0.030 g/mile	30
2028	0.030 g/mile	15
2029	0.030 g/mile	0

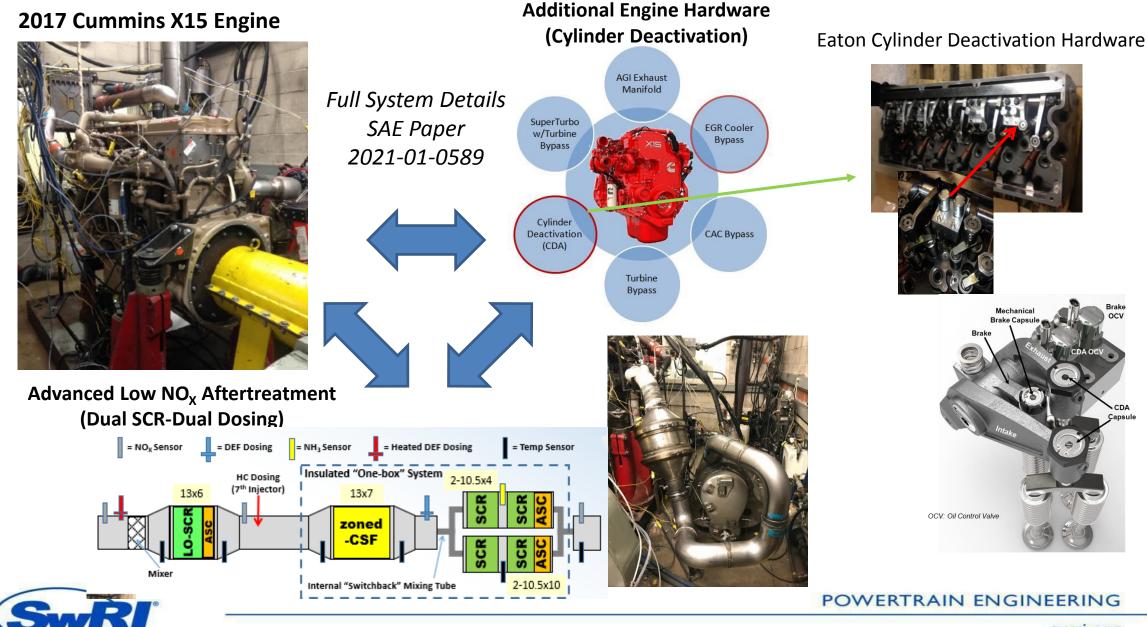
EPA Proposed Stringent PM standards with Phase In

Test Cycle	Proposed PM Standard	Model Year	Phase In
	(mg/mi)	2027	40%
25°C FTP	0.5	2028	80%
US06	0.5	2029	100%
-7°C FTP	0.5	2030+	100%

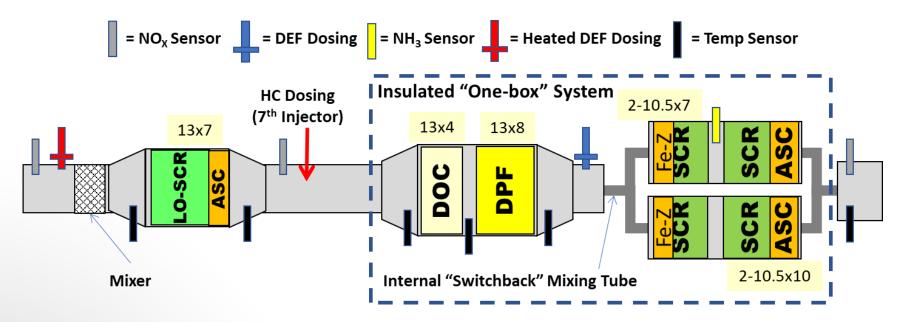
CARB and EPA aligned on eliminating emissions from off cycle operation

- Same numerical standards on all cycles: 25°C FTP, HFET, US06 and SC03.
- Single NMOG+NOx fleet average -7C FTP standard of 300 mg/mi
- Set limit for high power cold starts over US06 for PHEVs
- Limits for 8 sec and current 20 sec. on FTP
- Partial soak warm engine starts (10 min., 40 min, >180 min)
- Tighter evaporative limits on running loss, sealed tanks and incomplete chassis to cover all gasoline vehicles.
- Battery minimum performance standards based on UNECE

CARB and EPA Multi-Year Technology Demonstration Program Supported by MECA


CARB/EPA HD Low NOx Test Program Objectives Contract with Southwest Research Institute

- Started in 2014 with CARB and transitioned to EPA in 2020
- Program goal was to demonstrate 90% reduction below current HD NO_x standards
 - -0.02 g/bhp-hr (0.03 g/kWh)
 - -Aged parts (Full useful life engine-based accelerated aging)
- Solution must be production ready
- Solution not adversely impact GHG standards (CO₂, N₂O)
- Engine calibration in parallel with thermal management and exhaust control development


9

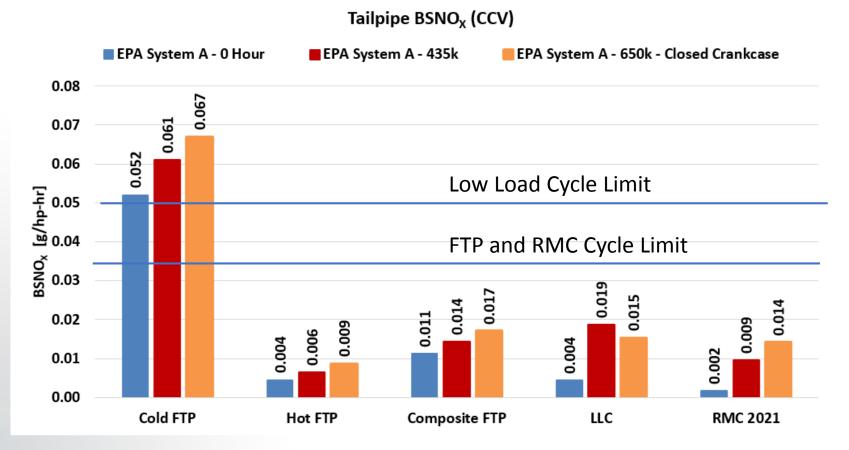
EPA Low NO_X Demonstration Engine

10

EPA Improved Aftertreatment System for Iow N₂O

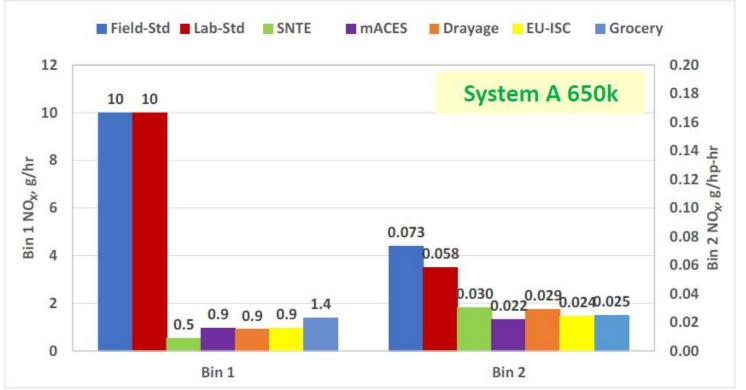
Improved formulation including Fe-zeolite layer at front of downstream SCR

- Reduced $\rm N_2O$ formation with new system at below half of EPA standard (0.13 g/kWh)


Replaced zoned-CSF with DOC+DPF

Improved downstream DEF mixing

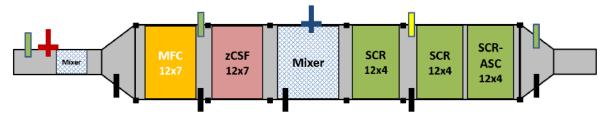
Further improved low temperature durability


Aftertreatment Testing after 1 million km

- Little degradation in NOx emissions after 700,000 km of engine aging
- Slight CO₂ increase caused by elevated backpressure due to ash load
- Open crankcase increases NOx by 0.01 g/kWh

Field Duty Cycle Results after 1,000,000 km

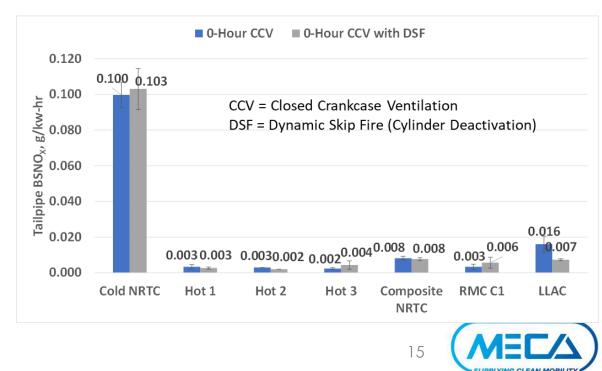
- Emissions evaluated using new EPA 2-bin Moving Average Windows method (no Exclusions)
- Low Load emission problem is <u>eliminated</u> with Low NO_X technology
- Emission controls are durable to 1 million km
- For closed-crankcase, Bin 2 results would be lower by ~ 0.01 g/kWh


CARB Non-Road Low NOx Test Program

Nonroad Low NO_X Demonstration Program

Overall goal of Nonroad Low NO_X effort is to demonstrate production feasible technologies to reduce emissions:

- NO $_{\rm X}$ by 90% (nominal target of 0.04 g/kw-hr)
- PM by 75% (nominal target of 0.005 g/kw-hr)
- Useful Life target at 8,000 hours
- Test cycles include: NRTC and RMC 8-mode
- Adding NR-Low Load Cycle at 15% avg. load vs 35% for NRTC
- GHG reduction target 5-8.6%
- OBD and REAL periodic reporting of NOx and CO2


		Improvement in CO2, %				
	Cycle	Pkg 2 without CDA	Pkg 2 with CDA			
	Cold NRTC	4.7%	5.7%			
	Hot NRTC	5.6%	6.3%			
	Composite NRTC	5.6%	6.3%			
ľ	RMC C1	3.3%	4.4%			
	LLAC	5.5%	10.9%			

Cylinder Deactivation

John Deere 6068 (6.8L) Tier 4f Engine

Conclusions

- Control of emissions to near zero levels from all powertrains will be needed as we transition transportation to achieve air quality goals
- Technology is evolving at a rapid pace creating new opportunities for system solutions including engines, aftertreatment and fuels to ensure real world reductions.
- Nonroad equipment can benefit from on-road experience: technology demonstration is ongoing at Southwest Research Institute with funding from CARB and MECA.

Thank You

rbrezny@meca.org

CARB Tier 5 Discussion Concept

	Power	Tier 5 Targets
	≤ 19 kW	Zero Emission
Tier 5 Targets:	>19 kW to ≤56 kW	Up to 75% reduction in PM and NOx
	>56 kW to 560 kW	90% lower NOx and 75% lower PM
	>560 kW	50% lower NOx and PM
	All	5 to 8.6% lower CO ₂

• LLC and idle limits tbd after SwRI testing complete in Fall 2023

- CA-only Tier 5 standards will have limited scope, Federal EPA standards needed
 - CARB is pre-empted from regulating new farm and construction engines under 175 hp—category represents ~50% of off-road engine emissions in the state.

18