

Role of Alternate fuels in Sustainability goals of Cummins

Dr. Mandira Bhattacharyya Technical Director Cummins Emissions Solutions

November 2, 2023

Public

Outline

- Decarbonization journey
- * Destination Zero
- Cummins Power Journey
- Low Carbon Fuels Deep Dive
 - Understanding the Fuel
 - Impact on Engine
 - Challenges for After Treatment
- Cummins partnership with alternate fuels

Public

Decarbonizing the total chain of emissions is essential

WELL-TO-WHEELS EMISSIONS

Reaching Destination Zero

$\rm CO_2 \, emissions$

Public

Cummins Power Journey

Public

Natural Gas

Light gas and odorless

2, Chemical Properties

Natural gas has high energy density on a mass basis

Natural gas consists of 85 to 96% Methane 3. Lesser emissions of pollutants like carbon dioxide (CO2), hydrocarbons(UHC), carbon monoxide (CO), sulfur oxides (SOx) and particulate

- Stoichiometric vs. lean burn NG engines
 - Tradeoff between good fuel economy and low emission

Parameters	Stoichiometric	Lean		 In Comparison with a diesel Engine: 1. NOx Emissions are higher 2. Additional emittants include Methane and CO
Emissions/ Fuel economy	Lower emissions	Better fuel economy		
Temperature	Higher T	Lower T		
Aftertreatment	TWC	OC+SCR		

Simpler architecture compared to Diesel ATS

Primarily observed in NG applications

Cause: Fuel quality

Public

Challenges for ATS:

- 1. Slightly higher H2O compared to diesel
- 2. Severe Aging- pgm sintering
- Chemical contamination- S, P, Zn, Ca

Hydrogen

Sources (10 different sources)

Blue: Natural Gas

Grey: Steam methane Reforming with out capture of CO2

Pink: Electrolysis from Nuclear Energy

Green: Electrolysis from Renewable Energy

Public

Cummuns

Hydrotreated Vegetable Oil (HVO)

Feedstock

Diesel Vs. HVO

1. Physical properties

HVO has similar physical properties as diesel

HVO also has approximately 7% less fuel density, limited aromatic and sulfur content, and a higher cetane value versus diesel fuel

2. Chemical Properties

HVO has higher oxidation stability compared to biodiesel 3. HVO are shown to reduce net greenhouse gas (GHG) emission by up to 90% compared to conventional diesel, dependent on the exact feedstock and fuel pathway

✓ The fuel can be used as drop in fuel , without any change to the engine

https://server1.pla.co.uk/assets/pla-env-alternative-diesel-fuelsv4

- HVO GTL Diesel 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Idle (800) 1000 1200 1500 2500 Engine speed (rom
- Due to limited sulfur content in the fuel, there is lower need of temperatures for desulphation and regeneration
- Regen Temperature requirements are lower due to size and structure of soot
- ✓ Better thermal durability of ATS

I.

L

I.

I

Public

Alcohols(Ethanol/Methanol)

Diesel Blends with Ethanol/ Methanol

- ✓ Higher BSFC with increase in blend concentration
- Material compatibility is critical for engine durability for both fuels
- ✓ Fuel Pumping System Protection

Diesel Vs. Alcohols (Ethanol/Methanol)

1. Physical properties

Viscosity, density and high heat value are lower compared to diesel fuel Solubility in diesel is impacted by temperature & water content

2. Chemical Properties

Oxygen content increases and aromatics fractions decreases with increase in alcohol blend

3. Nox and Smoke numbers (particulate matter) decrease with increase in alcohol in blend percentages.

With increase in blend concentration, there is an improvement in emissions

Challenges for ATS

- After-treatment Poisoning due to fuel source
- Secondary emittants can be reduced using the catalyst like diesel oxidation catalyst

Public

Summary

- Alternate Fuels play a critical role in emission control; reduction on fossil fuel dependency; and energy independence
- Cummins has strong presence and development in each type of alternate fuel and is willing to partner for a suitable application of alternate fuel

Cummins | 11

Public

Refer: History of Biodiesel – Farm Energy (extension.org)

Rudolf Diesel's used Peanut oil in 1890

The first natural gas vehicle using pressurized gas container was observed in Italy 1936

Refer: Technical overview of compressed natural gas (CNG) as a transportation fuel

First Internal combustion engine that used a hydrogen/oxygen combination, was developed in 1806 by Francois Isaac de Rivaz

First Ethanol based engine was developed in Brazil in 1978 by Fiat

Contact Information

Dr. Mandira Bhattacharya Director of Engineering ^{Cummins Emissions Solutions}

Cummins Technical Center India Pune, Maharashtra, India Contact: hr992@cummins.com

