








Miguel Zoca Angelo Alves Avinash Magar Ajit Kulkarni Rajesh Maynal



 $C_2H_5OH$ 

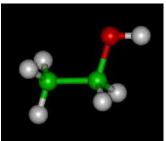
# Ethanol Blending- EXX





### Contents

➢Introduction


#### Umicore Test Results – FTP Test

Umicore Test Results THC(Detailed) ,CO, NOx Impacts – US06+ FTP Test

➤Summary & Conclusion



#### WHAT IS ETHANOL- STRUCTURE-PROPERTIES



The chemical compound **ethanol**, also known as **ethyl alcohol** or **grain alcohol**, is the bio-alcohol found in alcoholic beverages.



When non-chemists refer to "alcohol", they almost always mean ethanol.

It is also increasingly being used as a fuel (usually replacing or complementing gasoline). Ethanol's chemical formula is  $C_2H_3OH$ .

#### Chemical and Physical Properties of the Ethanol Molecule

#### **Properties**

Pure ethanol is a flammable, colorless liquid with a boiling point of 78.5° C.

Its low melting point of -114.5° C allows it to be used in antifreeze products. It has a pleasant odor reminiscent of whiskey.

Its density is **789 g/l** about 20% less than that of water. It is easily soluble in water and is itself a good solvent, used in perfumes, paints and tinctures. Alcoholic drinks have a large variety of tastes,

#### Ethanol as fuel

Ethanol is flammable and burns more cleanly than many other fuels.

When fully combusted its combustion products are only carbon dioxide and water. For this reason, it is favoured for environmentally conscious transport schemes and has been used to fuel public buses.

However, pure ethanol attacks certain rubber and plastic materials and cannot be used in unmodified car engines.

Additionally, ethanol has a much higher octane rating than ordinary gasoline, requiring changes to the spark timing in engines.

A mixture containing gasoline with at least 10% ethanol is known as gasohol. One common gasohol variant is "E15", containing 15% ethanol and 85% gasoline. These concentrations are generally safe for regular automobile engines, and some regions and municipalities mandate that the locally-sold fuels contain limited amounts of ethanol. The term "E85 ethanol" is used for a mixture of 15% gasoline and 85% ethanol. Beginning with the model year 1999, a number of vehicles in the U.S. were manufactured so as to be able to run on E85 fuel without modification.



#### WHAT IS ETHANOL- FOSSILE PROPERTIES

| Fuel                                              | Gasoline | Ethanol                          | n-Butanol                        | 2,5-Dimethylfuran               |
|---------------------------------------------------|----------|----------------------------------|----------------------------------|---------------------------------|
| Molecular formula                                 | C2-C14   | C <sub>2</sub> H <sub>5</sub> OH | C <sub>4</sub> H <sub>9</sub> OH | C <sub>6</sub> H <sub>8</sub> O |
| Molecular weight (g/mol)                          | 110.8    | 46.07                            | 74.12                            | 96.1                            |
| Research octane number                            | 93.1     | 107                              | 96                               | 119                             |
| Density at 20 °C (g/mL)                           | 0.745    | 0.789                            | 0.81                             | 0.89                            |
| Lower heating value (MJ/L)                        | 32.9     | 21.3                             | 26.9                             | 29.3                            |
| Laminar flame burning speed at 1 bar, 390K (cm/s) | 52       | 63                               | 57                               | 50                              |
| Viscosity at 20 °C (cSt)                          | 0.4-0.8  | 1.52                             | 3.35                             | 0.57                            |
| Surface Tension at 20 °C (mN/m)                   | 20-25    | 22.39                            | 24.6                             | 25.9                            |
| Vapor Pressure (kPa)                              | 55-103   | 18                               | 4.08                             | 1.253                           |
| Boiling point (°C)                                | 35-210   | 78                               | 117                              | 92                              |
| Latent heat of vaporization (kJ/kg)               | 180-373  | 840                              | 546                              | 332                             |
| H/C ratio                                         | 1.8      | 3                                | 2.5                              | 1.3                             |
| O/C ratio                                         | 0        | 0.5                              | 0.25                             | 0.167                           |
| Stoichiometric A/F ratio                          | 14.56    | 8.95                             | 11.13                            | 10.72                           |
| Stoichiometric CO2 (kg/L, fuel)                   | 2.38     | 1.51                             | 1.93                             | 2.45                            |

| Fuel   | Density at<br>20 °C (g/mL) | Lower Heating<br>Value (MJ/L) |       | H/C Rat | tio O  | /C Ratio | Stoichiometri<br>A/F Ratio |  |
|--------|----------------------------|-------------------------------|-------|---------|--------|----------|----------------------------|--|
| E20    | 0.754                      | 0.754 30.6                    |       | 2.0     | 6      | 0.07     | 13.27                      |  |
|        |                            |                               |       |         | Bl     | ock I    |                            |  |
|        |                            |                               | Unit  | Fuel A  | Fuel B | Fuel C   | Fuel D                     |  |
|        | Ethanol                    | Content                       | % vol | 10      | 20     | 30       | 85                         |  |
|        | RC                         | N                             |       | 96.5    | 99     | 101      | 107                        |  |
|        | M                          | N                             |       | 85      | 87     | 88       | 89                         |  |
|        | Octane Se                  | ensitivity                    |       | 11      | 12     | 13       | 18                         |  |
|        | Heat of Va                 | porisation                    | kJ/kg | 428     | 490    | 551      | 864                        |  |
|        | Calorifi                   | c Value                       | MJ/kg | 41,6    | 40,1   | 38,4     | 29,6                       |  |
|        | Calorin                    | c value                       | MJ/L  | 30,8    | 30,0   | 28,9     | 23,3                       |  |
| s-MDPI | Den                        | sity                          | kg/m3 | 742     | 747    | 753      | 786                        |  |







#### **Brazil Emissions-L8**

|        |                      |                       |       | NMOG+NO | PM <sup>(a)</sup> | со    | Aldehydes(c) | NH <sub>3</sub> <sup>(b)</sup> | Evaporative <sup>(c)</sup> | Refueling             |
|--------|----------------------|-----------------------|-------|---------|-------------------|-------|--------------|--------------------------------|----------------------------|-----------------------|
|        |                      |                       | Level | mg/km   | mg/km             | mg/km | mg/km        | ppm                            | g/test                     | mg/L fuel<br>supplied |
|        |                      |                       | 320   | 320     | 20                | 1000  | -            |                                |                            |                       |
|        |                      |                       | 280   | 280     | 20                | 1000  | -            |                                |                            |                       |
|        |                      |                       | 250   | 250     | 20                | 1000  | -            |                                |                            |                       |
|        |                      |                       | 220   | 220     | 10                | 1000  |              |                                |                            |                       |
|        |                      |                       | 200   | 200     | 10                | 1000  | -            |                                |                            |                       |
|        |                      |                       | 170   | 170     | 9                 | 1000  |              |                                |                            |                       |
|        |                      |                       | 140   | 140     | 6                 | 1000  | 15           |                                |                            |                       |
| Diesel |                      |                       | 110   | 110     | 6                 | 1000  | 15           | 10                             | 0.5                        | 50                    |
| LCVs   |                      |                       | 80    | 80      | 6                 | 1000  | 15           |                                |                            |                       |
|        | Spark-               |                       | 70    | 70      | 4                 | 600   | 10           |                                |                            |                       |
|        | ignition             | This see d            | 60    | 60      | 4                 | 600   | 10           |                                |                            |                       |
|        | LCVs (test<br>mass > | PVs and<br>LCVs (test | 50    | 50      | 4                 | 600   | 10           |                                |                            |                       |
|        | 1700 kg)             | mass ≤                | 40    | 40      | 4                 | 500   | 10           |                                |                            |                       |
|        |                      | 1700 kg)              | 30    | 30      | 3                 | 500   | 8            |                                |                            |                       |
|        |                      |                       | 20    | 20      | 2                 | 400   | 8            |                                |                            |                       |
|        |                      |                       | 0     | null    | null              | null  | null         | null                           | null                       | null                  |

(a) Applicable to vehicles equipped with diesel engines or direct injection SI engines

(b) Applicable to vehicles equipped with diesel engines with aftertreatment systems using a liquid reducing agent (c) Applicable to vehicles equipped with Otto cycle engines

Corporate average emission limits for the L-8 standards are shown in Table 4. The limits correspond to emission levels included in Table 3, which define corporate average emission limits for each regulated pollutant. For example, in 2025, the corporate average emission level for passenger vehicles is set at 50, which corresponds to fleet-average emission limits of 50 mg/km for NMOG+NO<sub>x</sub>, 4 mg/km for PM, 600 mg/km for CO, and 10 mg/km for aldehydes.

Corporate average emission levels for PROCONVE L-8 standards

| Implementation date | PV corporate average<br>emission level | LCV corporate average<br>emission level |  |  |
|---------------------|----------------------------------------|-----------------------------------------|--|--|
| January 1, 2025     | 50                                     | 140                                     |  |  |
| January 1, 2027     | 40                                     | 110                                     |  |  |
| January 1, 2029     | 30                                     | 50                                      |  |  |
| January 1, 2031     | 30                                     | 30                                      |  |  |







# Umicore Ethanol Project

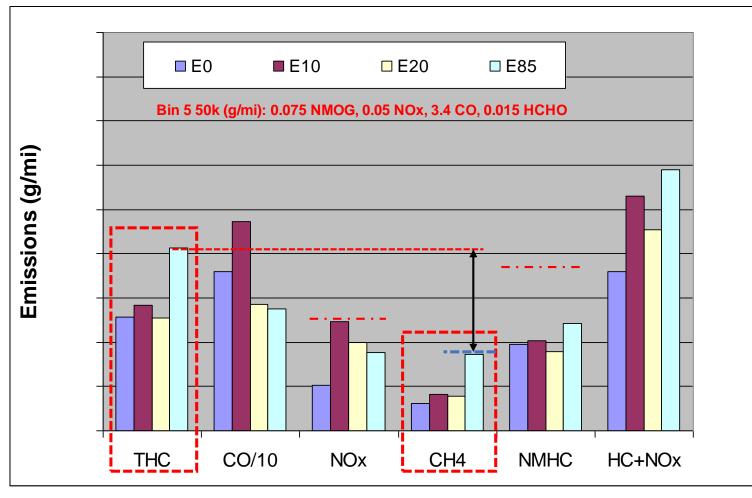




## North America Project layout

- Vehicle: 3.5 V6 Flex Fuel Bin 5 (CC1 & CC2)
- Aging: four mode aging equivalent to 4k and 120k miles
- Fuels: E0, E10, E20, E85
- Test Cycle: FTP 75, US06
- CC1 82g/ft<sup>3</sup>on 400/4 (0.58L)
- CC2 25g/ft<sup>3</sup>on 400/4 (1.12L)



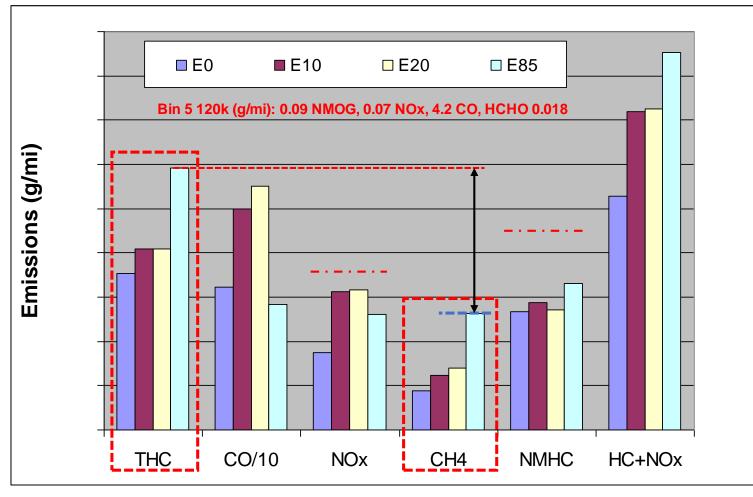



# FTP Bag Results



### 4k FTP Bag Emissions



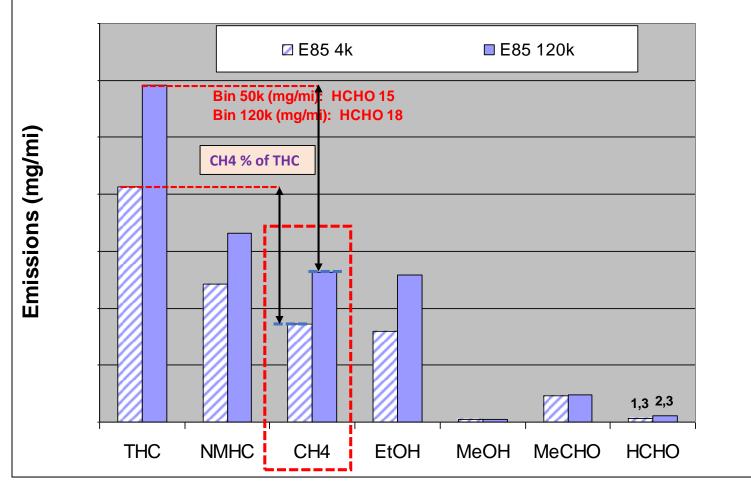



\* average of 3 tests



### 120k FTP Bag Emissions






\* average of 3 tests





# E85 FTP HC Emissions by components



\* average of 3 tests



## Summary FTP Bag Emissions



- 4k
- THC: Higher CH<sub>4</sub> emissions due to cracking of Ethanol for E85, but E10 and E20 equal to E0, NMHC almost unchanged
- CO, NOx: Maximum for E10

120k

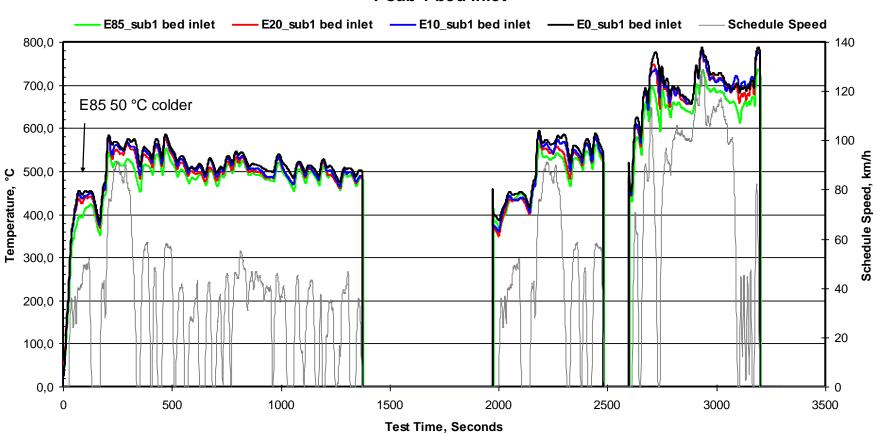
- THC: Higher CH<sub>4</sub> emissions for E10 and E20, much higher for E85, NMHC almost unchanged
- CO, NOx: Clearly increased for E10 and E20, but not for E85

Both agings some acetaldehyde, almost no formaldehyde





# FTP+US06 Modal Data

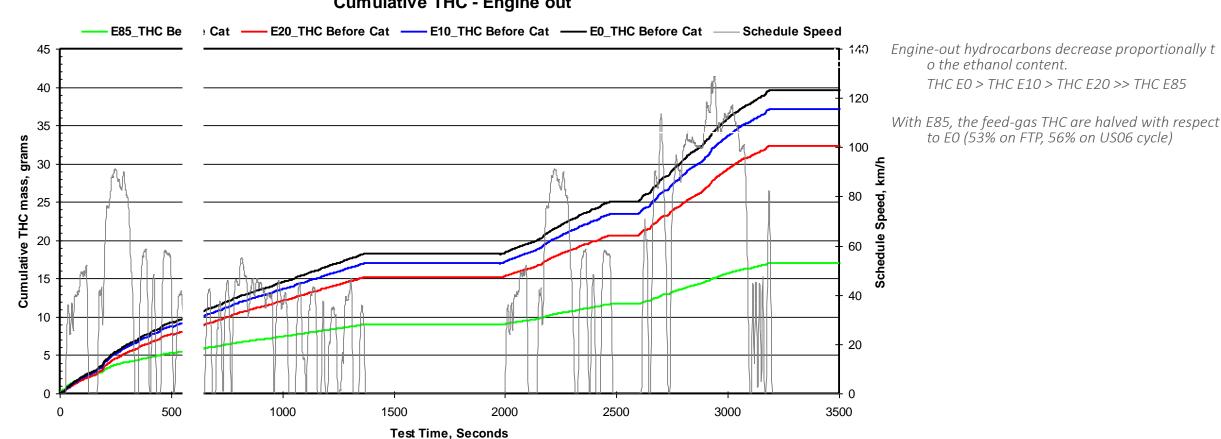

120k





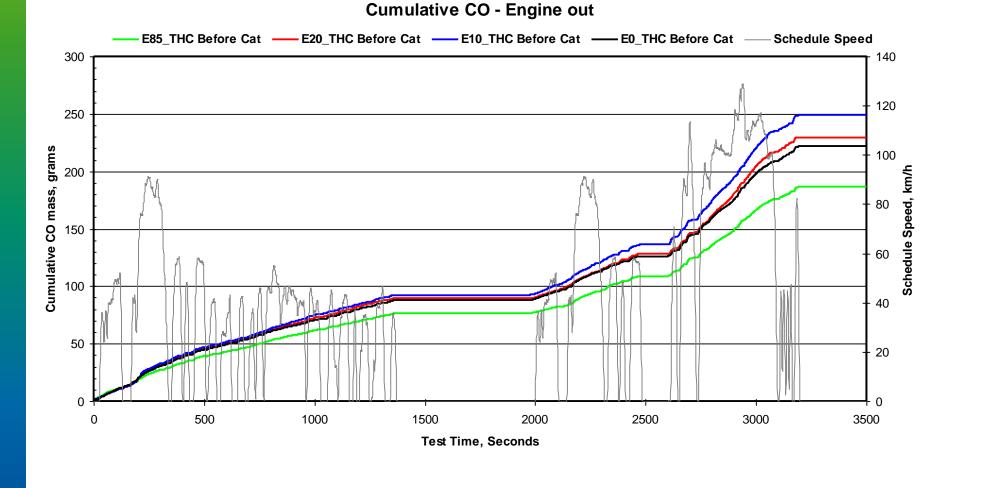
### Ethanol Effect on Temperature






T sub 1 bed inlet




#### Effect Of Blending on THC



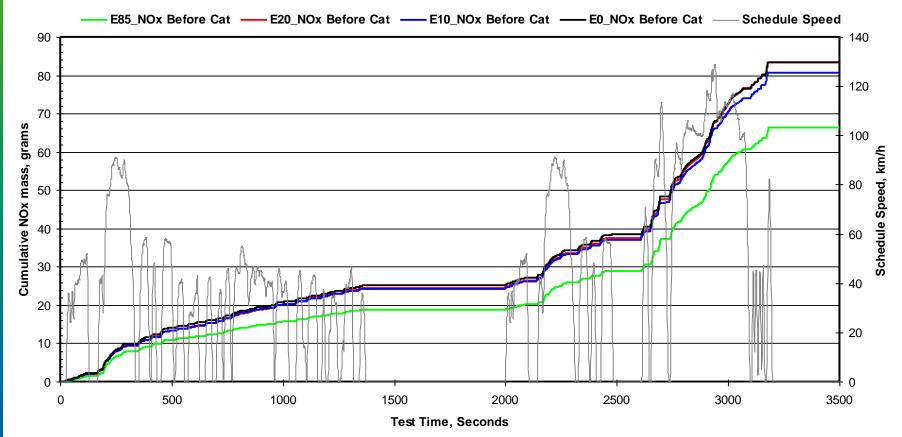


**Cumulative THC - Engine out** 

#### Effect Of Blending on CO





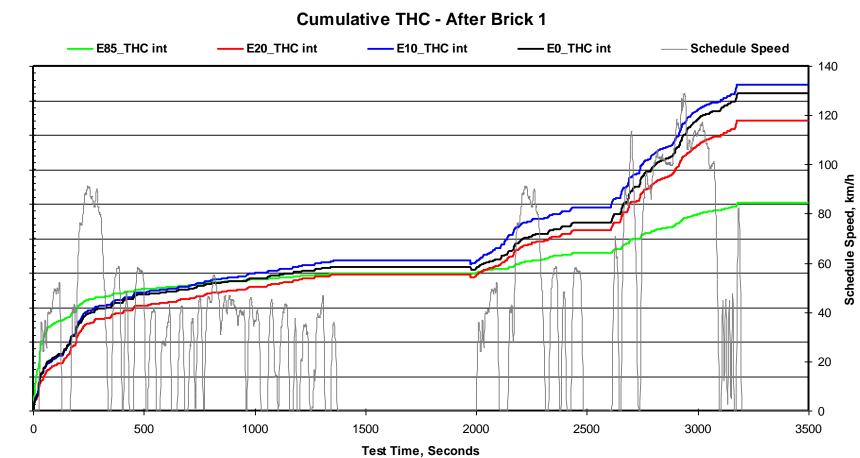





#### Effect Of Blending on NOx



**Cumulative NOx - Engine out** 








#### • THC after Brick 1-FTP+US06 Modal Data



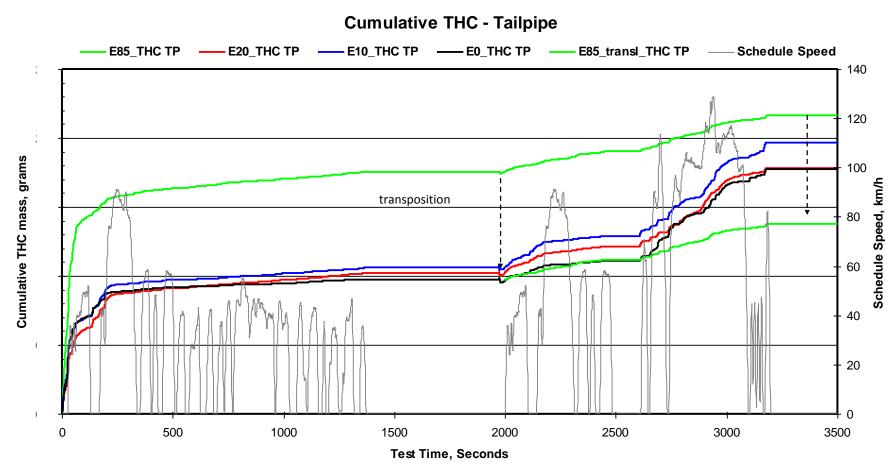


Cumulative THC mass, grams



### THC after CC1




- First 500s of the cycle: THCs significantly higher with E85 (cold startproblem), but in warmed-up phase lower than for all other fuels, especially for US06.
- E10 has the highest emissions, the difference comes mainly from restart and following acceleration

THC E10 > THC E0 > THC E20 >> THC E85





#### THC tailpipe-FTP+US06 Modal Data







# THC after CC2

- Cold start problem for E85
- E10 has the highest emissions, the difference comes mainly from restart and following acceleration and US06

THC E85 > THC E10 > THC E0 = THC E20



#### **Conclusion:**



- > After-Treatment solutions for Ethanol(E20) and Flex fuel are available readily based on the Brazil experience
- > Hydrocarbons

With increasing ethanol content, CH<sub>4</sub> emissions increase due to cracking of ethanol, NMHC stays almost the same

→ 2 critical points for E85 light off: ethanol emissions warmed-up: CH<sub>4</sub>

#### > NOx and CO

Are extremely depending on air to fuel ratio = calibration. Hence OEMs need to focus more on calibration robustness

> Our After- Treatment Systems Ready for future emissions