

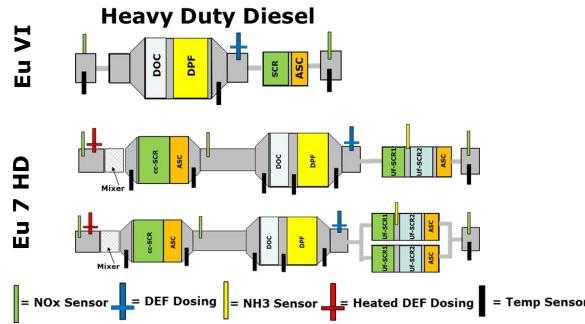
Johnson Matthey Inspiring science, enhancing life

Modeling Activities to Support After-Treatment System Design for Future Eu 7 HD/ BS VII Vehicles

Dr. Manohar Prasad, Global Modeling Team

Clean Air, Johnson Matthey

Overview


Modeling at JM	3
Overview of Eu 7 HD	4
Technological Advancement of JM Catalysts	5-10
Summary	11

Modeling at JM – Global Locations

- 30+ years of experience of successfully using modeling tools for customer support
- High fidelity kinetics models validated against engine data
- Models are available on common software platforms including Matlab/Simulink

				PGM Loading	Catalyst Size	
CO/HC Removal	PM Removal	NOx Removal	NH ₃ Removal	CO/HC/NOx Removal	WC Loading	Catalyst Aging
DOC	DPF	SCR	ASC	TWC		
	CSF	LNT			Feed Gas	S Poisoning
	GPF	PNA			Temperature	And more
	SCRF®					

Challenges with Euro 7

- \checkmark Addition of N₂O
- ✓ Strict emissions limits
- ✓ Stringent limits of PM/P
- ✓ Stronger push toward d
- ✓ Poisoning of catalysts

ASC ASC	CO mg/kWh	1500	1950
NF-SCR1 UF-SCR2	NMOG mg/kWh	80	105
Heated DEF Dosing = Temp Sensor	NH ₃ mg/kWh	60	85
-	CH ₄ mg/kWh	500	650
' HD	N ₂ O mg/kWh	200	260
N Jual dosing	CI-Compressi Particulate m nm size, PN ₁₀	ass, PN ₂₃ -Pai	ticulate nu

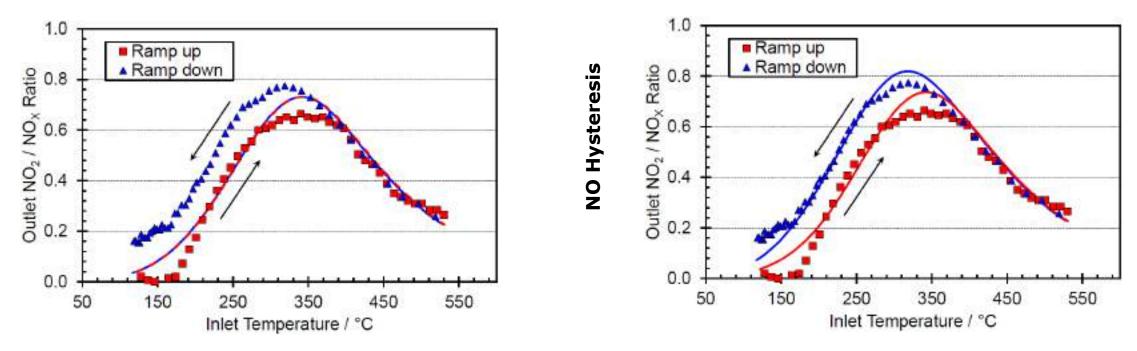

Introduction and Overview of Eu 7 HD

· · · · · · · · · · · · · · · · · · ·	•	
WHSC (CI) and WHTC (CI and PI)	<i>Real Driving Emissions (RDE)</i>	Eu VI- (Weighted WHTC)
200	260	460
8	-	10
6 x10 ¹¹ PN10	$9 \times 10^{11} PN_{10}$	6 x10 ¹¹ PN ₂₃
1500	1950	4000
80	105	160
60	85	10 ppm
500	650	500
200	260	-
	and WHTC (CI and PI) 200 8 6 x10 ¹¹ _{PN10} 1500 80 60 500	and WHTC (CI and PI) Emissions (RDE) 200 260 8 - 6 x10 ¹¹ PN10 9 x10 ¹¹ PN10 1500 1950 80 105 60 85 500 650

re ignition, PMumber under 23 ider 10 nm size

Technological Advancement of JM Catalysts: N₂O Make in DOC Steady State Modes

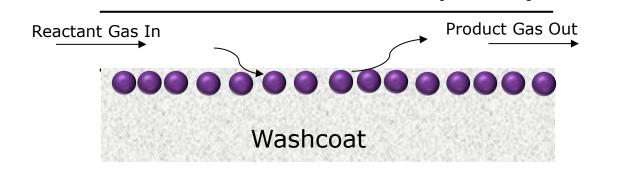
• Data — Model


✓ Incorporated NH₃ oxidation reactions in the DOC Model

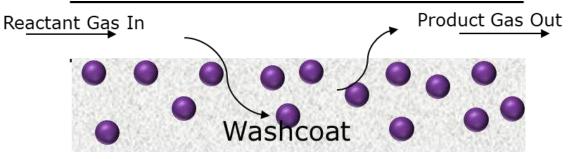
✓ Model captures the HCs, NH₃ and N₂O make in DOC, which helps to tackle future Eu 7 HD norms more effectively

Technological Advancement of JM Catalysts: NO Predictions in DOC An Oxide Layer is Formed on Surface of Catalysts Which Affects the Activity

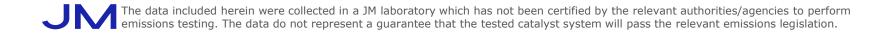
Traditional NO oxidation


Including Oxide Effect

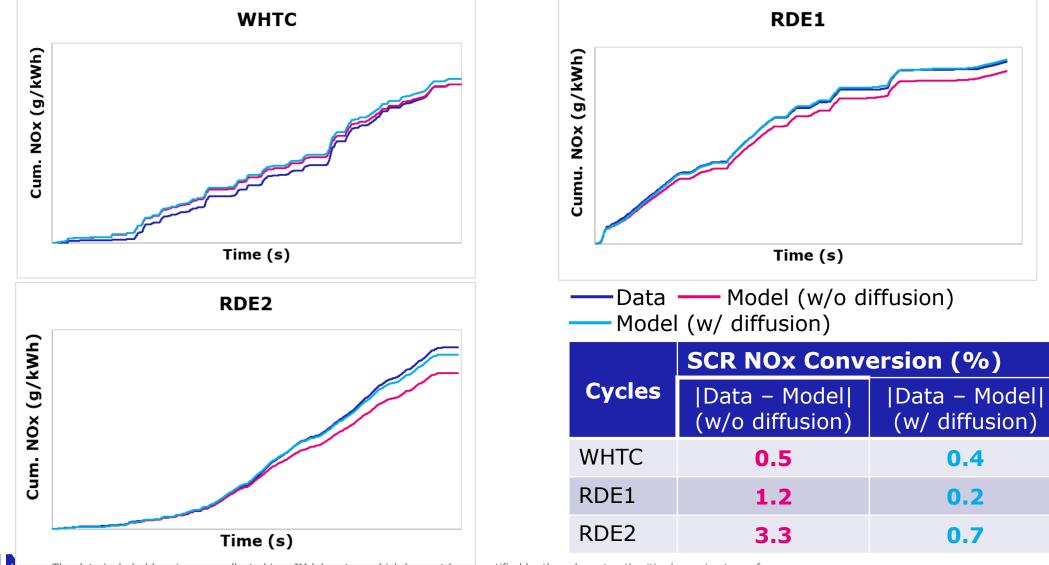
NO prediction is improved significantly on considering the oxide effects in the reaction mechanism


Ref: SAE Int. J. Engines 5(3):2012

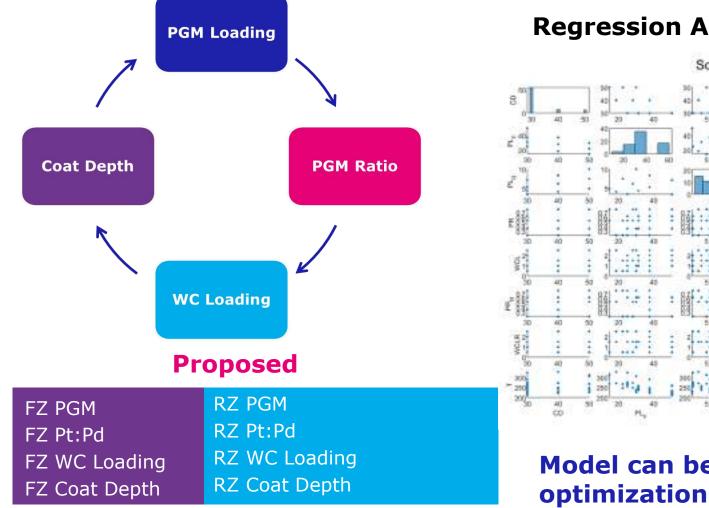
Technological Advancement of JM Catalysts: Washcoat Diffusion Limitation of Current Model Framework at High Flow Conditions

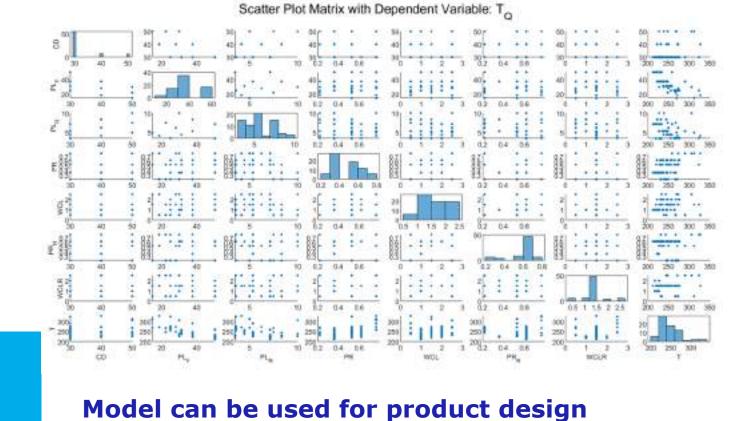

Kinetic Model – External Mass Transport Only

WC Diffusion Model – External + Internal Transport

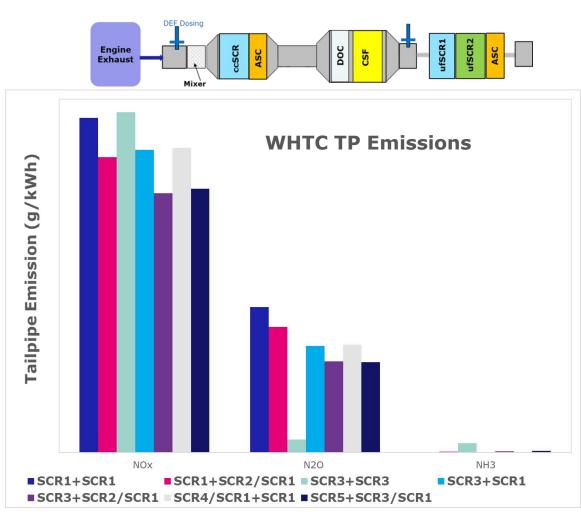


Note: In 1D kinetic model, all the catalyst active site present on the surface


Note: In 1D+1D model, reactant gas must diffuse inside the washcoat to interact with active site


Technological Advancement of JM Catalysts: Washcoat Diffusion NOx Prediction: Washcoat Diffusion Improves Model Predictions

Technological Advancement of JM Catalysts: Product Design **DOC Designs Based on Simulation Results**



Regression Analysis for Tunable Parameters

Example of Simulation Led Design of System Architecture System Architecture Design for Eu 7 HD

- To perform this testing physically would require:
 - Manufacturing 13 bricks
 - Running 28 engine tests
 - Complete program would require 84 tests as alternative dosing options were also simulated
- If only the best 2 options from simulations need to be tested this reduces to
 - Manufacturing 8 bricks
 - Running 8 engine tests
 - Include dosing strategy optimisation

Summary

JM invested significant resources to build kinetic model library for emission catalysts

Models are useful to design system prototypes, resulting in significant cost and time savings for OEMs

Models are also useful for post design verifications and optimizations

Models are being updated to facilitate system design for future Eu 7 HD / BS VII Vehicles

This disclaimer informs viewers that the views, information, or opinions expressed in the presentation belong solely to the presenter, and not necessarily to the presenter's employer, organization, committee or other groups or individuals.

The presenter/speaker has tried to acknowledge the references wherever possible. If some portion is not acknowledged then kindly consider and understand that the material in this presentation is going to be used for "Fair Use" purpose only. Further, this material can be referred by readers for "Fair Use" purpose only. Further, this material can be referred by readers for "Fair Use" purpose only and should not be used for commercial purposes directly or indirectly.

Johnson Matthey Inspiring science, enhancing life